Mathematics 1: Second midterm Cheet-Sheet (Theory)

Functions and vector functions

Function of several variables

f:Dy CR® - R, & = (21, ...,zn) = f(1,...,@x) is a function
of several variables, with domain Dy. Level curve of a function
f = f(z,y) is the set of all points f(z,y) = 0.

Partial derivative of a function w.r.t. a variable x; at point @
is me(a) (a) f(a17 ”‘i—l7”'i+hhyai+1v-~san)_f(a)7

and (grad f)( ) [fM(a),. . fon (@)] is a gradient vector. The
directional derivative of a function at a point in the direction

of a vector &is fz(@) = (grad f)(a)H;IH =31 fu, (@ )uan
Second order partial derivatives:
—(Z) from which we get the
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n x n Hessian matrix: Hy (%) = [%(f)]
x;0w;

i,j=1,...,n
If all second order partial derivatives fzwvj (Z) are continuous
at x, then the Hessian matrix is symmetric.

Vector functions of several variables

F:Dp CR" 5 R™,Z = [fi(@) ... fm(@)]" = F(&).

The m X n Jacobi matrix all first order partial derivatives of
fi, .y fm (derivative of F' over Z) describes the local dilatation
of the volume:
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2 2 (7 2 (7
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Properties: % = I, 853_;” =Aif A e R™mX",
ST = 2T A=
90°F _ GT it g e R, 2T AT _ 3T (A4 AT) if A € ™™,
g
W =28T A if A € R"*" and symmetric, aHI” =277,
aGT2) _ srog | oroz 0H _ 9(FoG) _ file]
o7 =% oz Y oz oz = o= *( ())W

Multiple integrals

Double integral over a rectangle
JIp (@ y)dedy = Tlim 3700, 350, f(2;,v5;) Aw Ay

where R = [a, b] X [c, d], Az = bTa, Ay = ;LC and zf;,y;; are
chosen points in the mn smaller rectangles. This equals the
volume of the bounded solid of the rectangle under the graph
of f(x,y) if f is nonnegative Fubini theorem:

[ f@y)dzdy = [4(° fla,y)dz)dy = [P([* f(z,y)dy)dz

Double integral

D C R” is a bounded region, f : D — R continuous. We choose
a rectangle R such that D C R, and define the double integral
[ over region D as [[, f(z,y)dzdy = [[, F(z,y) dz dy, where
F(z,y) = f(z,y) when (z,y) € D and 0 otherwise.

Using Fubini:

Ifo{(w y)ia <z <bei(x) <y < pa(z)} CR2 then

[fp fz,y)dady = [, (f“of((:)) f(z,y)dy)dz.

hm

If D= {(z,9);91(y )<x<192( ),e <y < d} CR? then
[fp f(z,y)dedy = f f§2<y)f (z,y)dz)dy.

1(v)
Triple integrals

. are defined similarly. By Fubini’s theorem, we can express a
triple integral as integrating three times over appropriate
intervals.

Change of variables

f: D — R continuous on D C R? and

z = p(u,v),y = ¥u,v),z = ¥(u,v) such that detJ, 9 # 0,
then: [f,, f(z,y)dedy = [, f(e(u,v),9(u,v))|detd, 9| dudv
which can be extended to R? getting [[[}, f(z,y,z) dzdydz =
fD f(QO(’LL, v, ’U)), 19(’“’7 v, ’LU), d)(uz v, w))|det‘](p,’l9,’¢1| du dv dw.
Common substitutions:

Polar coordinates in R? - = r cosp, y = r sing,r > 0,

o € [0,27], det Jporar =7

Cylindrical (3D polar) coordinates in R? — 2 = r cosep,
y=rsinp,z=2z,1>0,0 € [0,27],2 € R and

det chlindric =T

Spherical coordinates in R? - & = r cosy cos®, y = r sing cos?,
z =rsind,r > 0,9 € [0,27],9 € [~ 5, 5] and

det Jspherical = r2 cos?.

Optimisation

Classification of local extrema

f:R* = R,a € Dy:

@ is a local maximum of a if for all £ # @ (V||Z — d|| <  for a

small €) we have f(Z) < f(d).

@ is a local minimum of « if for all ¥ # @ (V||Z — @|| < € for a

small €) we have f(Z) > f(d).

If f has continuous partial derivatives, then every local

extremum is a critical point of f, (grad f)(&@) = 0.

If Hy (@) is PD, then f has a local minimum at @.

If Hy(a@) is ND, then f has local maximum at 4.

If Hy¢(d@) is indefinite, then f has no local extremum at @, @ is

a saddle point.

If Hy(a@) has an eigenvalue 0 (det Hy = 0), then we cannot

conclude about the type of critical point just from H¢(a).

Function is convex on D for all Z,§ € D and all t € [0, 1] if
FEZ+ 1 —-t)y) <tf(@)+ 1 —1¢)f(y). It is concave in D if —f

is convex.

For a twice differentiable f : D C R™ — R is convex only 1f f

is a PSD matrix on D, and is concave only 1f 2 is NSD on D.

Extreme values of a function sub _]ect to
equality constraints
Objective: Having f, gi, hj : R™ — R we want to minimisez
f(Z) having constraints ¢;(&) = 0,7 =1,2,...,m and
hj(Z) <0,j=1,2,..r. We set Dy, = {z € R"; g;(Z) = 0},
Dy, ={z € R";g;(&) =0}, D =Dy N (N2, Dg,) N (Nj_; Dp;)-
The problem (Px) is now mi% f(@).

Tre

Having only constraints g;(Z) = 0, the extreme values of f are
the critical points of the Lagrange function

L(#X) = /() = XTG() = (&) — ity Migi(7) where
é(f) =[g1(Z) ... gm(@)]T and X = [A; ... Am]T, A; are
Lagrange multipliers.

Dual function: Karush-Kuhn-Tucker

conditions

Lagrangian: L(Z, X, i) = f(&) — N G(&) — T H(&) =

F(&) = 2272 Xigi(®) — 3574 pyhy(Z) where G(&) and X are
defined as before and we define (&) = [h1(Z) ... hr()]7,
g=[p1 ... ,ur]T. The dual function with dual variables X and

g s
KX, i) = mf L(Z X, i) = mf {f(z

~XTG(2) — gTH(@)}.
K(X, i) is always a concave functlon.

If pj <0 for j =1,2,...,7 then K(x7 i) = ilg% L(Z, X,ﬂ) <
L(@, X, i) = f(3) = XTG(@) -
all i < 0.

We now have the problem (Dx) to mazimizes,
that p; <0 forj=1,..,r

We denote &* as the solution to (P*) and X*, i* as the
solutions to (D«). Then let p* = f(&*) and d* = K(X*, i*) we
can note d* < p*.

(Px) is a linear programming problem (f (%) = &7’
H(#) = AZ — b and, in addition, # < 0).

f,hj are convex and G(&) = AZ — b for some A € R™*" and
be R™ then d* = p*. In this case the optimal variables

Z*, \*, [i* must satisfy KKT conditions (the first one denotes
critical points of Z*):

AT H(Z) < f(Z*) for all X and

K(X, i) such

T is linear,

inf L(Z, X, %) — - (@) =0,
z oF
gi(@*)=0;9=1,2,...,m,
hi(E*) <0;5 =1,2,...,m,
pi <05 =1,2,..,m
Wby () = 055 = 1,2,

Other

Common trigonometry formulas
sin20 +cos?20 =1, tan20 + 1 =sec2 0, 1+ cot? 0 = csc2 0
sin?(8) = 125080 ol (§) = Lisost
sin(26) = 2sin § cos 0, cos(26) = cos?  — sin? 0
sin(f 4+ v) = sin 6 cosy & cos O sin v,
cos(f &) = cosfcosy + sinfsiny
a b c

sin@ sin vy = sino
2 =a?+ b2 —2abcosd, b2 = a? + ¢2 — 2accos~,
2 =2+ ¢ —2bccosf



Common surface equations

Ellipsoic

<, the ellipsoid is

Elliptic Paraboloid oy Hyperboloid of One Sheet

Hyperbolic Paraboloid z x y? Hyperboloid of Two Sheets

Horizontal traces are hyper
bolas

Common derivatives

(z) =1, L (|z|) = sign(z), 4= (e7) = e,

T\ — T d 1y _ 1 d _ 1
a”) = a” In(a), E(E) =T @\/5— 2z’
7)) = f}éj} Lif f(2) ==, L(na]) =

% log, (z)) = Iln(a), x>0, %(sin( )) = cos(z),

57 x;é07

(

(

(
%(cos(:c)) = —sin(z), 4 (tan(x)) c2(z) = tan?(z) + 1,
%(cot(a})) = —CSC2(12), i (sec( )) = sec(x) an(z)7
7z (ese(z)) = — esc(z) cot(z ), 4 2z (sin™ Yx)) = \/73;7
a5 (cos™1(z)) = —%7 a5 (tan ™ (2)) = 74z,
%(sinh(x)) = cosh(z), -4 7 (cosh(z)) = sinh(zx),
E(tanh(m)) = COSII](I =1- tanhz( ),
s (sinh ™ (@) = —=—, 7 (cosh™(x)) = ﬁ
A (tanh ™ () = 2,

Common derivatives of vector functions
For vectors z,a from R", and matrix A:

oz __
oz = In
8zTa _ 0a"x a
ng - Taz
r=A

ai%A A

8795 -
oz’ x __

8% =2z
HzaxAz 7A$+ATCL’

T
% = 2Ax, if A is symmetric
9z _ Oy 9 _
éT; = %ngf (2 =y(=))
Common integrals

zn+1

[ kde =k, [2"de = S, n# 1fzn W’

fa:_ldx:fgdx—ln\gﬂ, Ja%dz = W’ Je¥dz = e®,

Jlog,(z)dz = zlog, (z) — zlog, (e€).

[ sin(z)dz = — cos(z), [ cos(z)dz = sin(z) [, tan(z)dx =
—In|cos(z)| = In|sec(z)|, [ cot(z)dz = In|sin(z)]|,

J sec(z)dx = In|sec(z) + tan(z)|,

J esc(z)dz = —In| csc(z) + cot(z)],

[sin~}(z)dz = zsin~!(z) + V1 — 22,

J cosT1(z)dz = zcosT1(z) — V1 — 22,

Jtan~Y(z)dz = ztan"!(z) — V12In(1 + 22),

fcot*1 (x)dxr = xcot™(x) + f2 In(1 4+ x2),

1—cos(x) 1+4sin(x)
f sm(z) dz = In ) sin(z) |’ f cos(z) dz =In cos(zx)

/ sm2<z) dz = — cot(z), [ COS2<I)dac = tan(z),

)

1 _ —cos(x) _ sin(z)
1+sin(x) dw = 1+sm(>z f l+coa(z) - 1+cos((z))’

1 _ cos(z _ —sin(x
f 1—sin(x) dr = 1—sin(x)’ f 1— cos(ac)dx ~ 1—cos(z)’

e, [we®dr = (x — 1)e®
[ ze®®dx = %,L> oz fﬁz%/i

z+a)" 1
f(1‘+ )ndCC_(thil 7”75717

n . _ (@+a)" T ((nt1)z—a)
fa:(:c:-a) de = ) ,
Fathas = - G, [ = -t
faerbdx_ In |CLCC+b| fa2+12dx:ltanfl (g)7
[ VT —ade =2 a)3, fmdw_(iaJrz;)m

(z -
[ Va2 +ads = i \/:c2+a+aln|ac+\/x2+a\

JVa? —z2dx = —x\/aQ — 22 —sm -1 (£),
g(w_a)§7

Jovr —adz = %a(:c - a)2 +
JzVz2 £ a2dx = %(12 + aQ)%
U-Substitution

The substitution, u = g(z), du = ¢’(z)dz is:

b , g(b)
[ #a@)g@de= [ fdu
a g(a)
Integration By Parts

/ F@)g (@)dz = [f(@)g(@)], - / f(@)g(z)d

u= f(z), fl(z)dz, dv=g'(x)dzx

[J udv = uv — [vdu]. As a rule of thumb use the following
order, u should be the function that comes first beween:
Logarthmic <> Inverse trig. — Algebraic (Az™) —
Trigonimetric — Exponential (k%).

Trig-Function Trick

v=g(z) du=

For [ sin™(z)cos™(z)dz evaluate the following: Deg(n) odd:

Strip one sin out and convert the rest to cos with

sin?(x) = 1 — cos?(z), then use substitution on u = cos(z).
Deg(m) odd: Strip one cos out and convert the rest to sin
with cos?(z) = 1 — sin?(x), then use substitution on

u = sin(z). Deg(n) and Deg(m) both odd: Use either (i)
or (ii). Deg(n) and Deg(m) both even: Use double angle
and/or half angle trig identities to reduce the integral.

Degrees Radians sin cos tan
0 0 0 1 0
30 /6 /2 V3/2 V3/3
45 /4 V2/2 V/2)2 1
60 /3 Vv3/2  1/2 V3
90 /2 1 0 00

120 2r/3  V3/2  -1/2 -3
135 3m/d V2/2 V/2/2 -1
150 57/6 /2 -V3/2 -V/3/3
180 m 0 -1 0
210 /6 -1/2 -V/3/2 V/3/3
225 S5m/4 -V/2/2  -\/2/2 1
240 4m/3 V3B/2  -1/2 V3
270 3m/2 -1 0 00
300 5m/3  -V/3/2  1/2 -3
315 /4 V2/2 0 V2/2 -1
330 /6 -1/2  /3/2 -V/3/3
360 21 0 1 0
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