
Mathematics 1: First midterm Cheat-Sheet (Theory)

Linear Algebra
Basics
N(A) = {x⃗ ∈ Rn;Ax⃗ = 0⃗},
C(A) = L {A(1), ..., A(n)} = {Ax⃗ : x⃗ ∈ Rn}, N(AT ) = C(A)T

and N(A)⊥ = C(AT ).
Eigenvalues - ∆A(x) = det(A− xI).
Eigenvectors - Ax⃗ = λx⃗ ↔ (A− λI)x⃗ = 0, non zero solution
det(A− λI) = 0 or rank(A− λI) not full and x⃗ = N(A− λI).
Computing the inverse of a matrix:[
A I

]
→ Gauss →

[
I A−1

]
.

Q ∈ Rn×m is orthogonal ↔ Q = [q⃗1, ..., q⃗n],
q⃗i · q⃗j = 0 ↔ q⃗Ti q⃗j = 0 (pairwise orthogonal), ||q⃗i|| = 1.

QTQ = I ↔ Q−1 = QT .
A ∈ R2×2...det(A) = a11a22 − a12a21.
A ∈ R3×3...det(A) = a11det(Ax1 )−a12det(Ax2 )+a13det(Ax3 ).
A invertible ↔ det(A) ̸= 0, det(A) = λ1 · ... · λn and λi ̸= 0.
A symmetric diagonalized: A = PDP−1 = QDQT .
A symmetric, if eigenvalues are real, eigenvectors are
orthogonal, full set of independent eigenvectors.
Full column rank ↔ columns are lin. independent.

Trace
tr(A) =

∑n
i=1 ai,i, properties:

tr(αA) = αtr(A), tr(A+B) = tr(A) + tr(B), tr(AT ) = tr(A),
tr(AB) = tr(BA), tr(PAP−1) = tr(A) (P invertible),
tr(ABC) = tr(CAB) = tr(BCA) (order remains).

Rank
rank(A) = rk(A) is the number of pivots in reduced row
echelon form = number of linearlly independednt rows = dim.
of the linear span of rows of A = number of lin. independent
columns = dim of the lin. span of columns of A = dimC(A)
= n− dimN(A) = size of the largest invertible square
sumbatrix of A.

Matrix similarity
A ∈ Rn×n and B ∈ Rn×n are similiar if exists invertible
matrix P ∈ Rn×n such that A = PBP−1. Similar matrices
have the same trace, determinant, characteristic polynomial,
eigenvalues and rank. Matrix is diagonalizable if it is similar
to some diagonal matrix A = PDP−1. The diagonal values of
matrix D are eigenvalues of matrix A and the columns of
matrix P are eigenvectors of matrix A. A,B ∈ Rn×n are
orthogonally similar if A = QBQ−1 = QBQT where
Q ∈ Rn×n is orthogonal matrix.

Schur’s Theorem
A ∈ Rn×n has R eigenvalues λ1, ..., λn, exists an orthogonal
matrix Q ∈ Rn×n, that QTAQ is upper (or lower) triangular
n× n matrix with diagonal entries λi. Matrix A is of the form
QDQT where D is a diagonal matrix with eigenvalues of A on
the diagonal and Q is an orthogonal matrix. If matrix A has
eigenvalues λ1, ..., λn then tr(A) = λ1 + ...+ λn and
det(A) = λ1...λn.

Frobenius norm
Scalar (inner) product A ∈ Rm×n and B ∈ Rm×n is
⟨A,B⟩ = tr(ATB) with properties:
⟨A,B⟩ = ⟨B,A⟩, ⟨αA+ βB,C⟩ = α⟨A,C⟩+ β⟨B,C⟩, for all
α, β ∈ R, ⟨A,A⟩ ≥ 0, ⟨A,A⟩ = 0 ↔ A = 0, For matrices
A ∈ Rm×n, B ∈ Rm×k and C ∈ Rk×n we have
⟨A,BC⟩ = ⟨BTA,C⟩ = ⟨ACT , B⟩.
A = [ai,j ] ∈ Rm×n → ||A||F = ||A|| =

√
⟨A,A⟩ =√

tr(ATA) = ||vec(A)||. σ1, ..., σk are singular values of A,

||A||F =
∑rkA

i=1 σ2
i = tr(ATA), ATA ∈ Rn×n, λi = σ2

i .

Kronocker Product

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

...
am1B am2B . . . amnB

 ∈ Rmp×nq

Properties:
1. 0⊗A = A⊗ 0 = 0
2. α⊗A = A⊗ α = αA, ∀α ∈ R
3. (αA)⊗B = A⊗ (αB) = α(A⊗B)
4. (A+B)⊗ C = A⊗ C +B ⊗ C and
A⊗ (B + C) = A⊗B +A⊗ C
5. (A⊗B)T = AT ⊗BT

6. (A⊗B)⊗ C = A⊗ (B ⊗ C)
7. (A⊗B)(C ⊗D) = (AC)⊗ (BD)
8. ||A⊗B||F = ||A||F ||B||F
9. If A ∈ Rn×n and B ∈ Rm×m, then (A⊗B)−1 = A−1 ⊗B−1

10. If A ∈ Rn×n has eigenvalues λ1, . . . λm and B has
eigenvalues µ1, . . . , µn then the set of eigenvalues of A⊗B is
equal to {λiµj}
11. If A ∈ Rn×n and B ∈ Rm×m, then tr(A⊗B) = tr(A)tr(B)
12. If A ∈ Rn×n and B ∈ Rm×m, then
det(A⊗B) = (detA)m(detB)n

13. rank(A⊗B) = rank(A) rank(B)
14. If A ∈ Rm×n, B ∈ Rn×p and C ∈ Rp×r, then
vec(ABC) = (CT ⊗A)vec(B)

PSD matrices

Matrix quadratic form

Quadratic form of A ∈ Rn×n:

x⃗TAx⃗ =
[
x1 ... xn

] [
A
] x1

...
xn

 =
∑n

j=1

∑n
i=1 aijxixj .

A = QDQT → xTAx = uTDu where u = QT x and
uTDu = λ1u2

1 + ...+ λnu2
n.

A symmetric matrix A ∈ Rn×n is:
Positive semidefinite (PSD) if xTAx ≥ 0∀x ∈ Rn or ↔ all
eigenvalues of A are non-negative.
Positive definite (PD) if xTAx > 0∀ nonzero x ∈ Rn or ↔ all
eigenvalues of A are positive (det(A) > 0).
Negative semidefinite (NSD) if xTAx ≤ 0∀x ∈ Rn or ↔ all
eigenvalues of A are non-positive.

Negative definite (ND) if xTAx < 0∀ nonzero x ∈ Rn or ↔ all
eigenvalues of A are negative.
Indefinite if xTAx > 0 for some x ∈ Rn and yTAy < 0 for
some y ∈ Rn or ↔ A has positive and negative eigenvalues.

Sylvester

A symmetric matrix A is PD if and only if the determinant of
each leading principal submatrix is positive and PSD when its
non-negative. A symmetric matrix A is ND if and only if the
determinant of the k × k leading principal submatrix is
positive if k is even and negative if k is odd.

Cholesky decomposition

QR decomposition: Q is orthogonal matrix of B and R is
upper triangular matrix of coefficients.
A = BBT = (QR)TQR = RTQTQR = RTR = LLT .
For invertible, (symmetric) and PSD matrix A ∈ Rn×n we
have Decomposition algorithm:

Write A1 := A =

[
a11 b⃗T

b⃗ B

]
, define L1 :=

[√
(a11) 0⃗T

1√
a11

b⃗ In−1

]
.

A1 = L1

[
1 0⃗T

0⃗ B − 1
a11

b⃗⃗bT

]
LT
1 .

Repeat this on A2 := B − 1
a11

b⃗⃗bT ∈ R(n−1)×(n−1).

If L1, L2, ...L3 are the matrices obtained in this way then:

L = L1 ·
[
1 0⃗T

0⃗ L2

]
· ... ·

[
In−1 0⃗T

0⃗ Ln

]
.

If one of these steps fails then the matrix A is not PSD.

Vector Spaces
Vector space
V is a set of vectors v ∈ V with two inner operations: addition
- u, v ∈ V ⇒ u+ v ∈ V and scalar multiplication -
v ∈ V, α ∈ R ⇒ αv = α · v ∈ V .
There exists a zero vector 0 and v + 0 = v and for each v ∈ V
exists an inverse vector −v, such that v + (−v) = 0.
1 · v = v, (αβ) · v = α · (β · v), (α+ β) · v = α · v + β · v,
α · (u+ v) = α · v + α · u, for all u, v, w ∈ V and α, β ∈ R.
Zero vector 0 is unique, 0v = 0 and α0 = 0.
Linear combination of vectors: vector of the form
α1v1 + ...+ αnvn.

Vector subspaces

Subset U of a VS V is a vector subspace if its closed under
linear combinations αu+ βv ∈ U .
Linear span L {v1, ..., vn} is the set of all linear combinations.
It is the smallest vector subspace containing vectors v1, ..., vn.

Basis of a vector space

Vectors v1, ..., vn are linearly dependent if ∃vk, written as a
linear combination
vk = α1v1 + ...+ αk−1vk−1 + αk+1vk+1 + ...+ αnvn and
linearly independent if it doesn’t exist. Vectors v1, ..., vn are
linearly independent if the only linear combination equal to 0
is α1v1 + ...+ αnvn = 0 ↔ α1 = ... = αn = 0.



The set of vectors B = {v1, ..., vn} ⊆ V is a basis of V if
v1, ..., vn are linearly independent and L = {v1, ..., vn} span
V . The number of elements in any basis of vector space V is
by dimV (dimRn = n; dimRn×m = nm; dimRn[x] = n+ 1).

Linear transformations
Transformation τ : V → U is linear if τ(u+ v) = τ(u) + τ(v)
and τ(αv) = ατ(v) ↔ τ(αv + βu) = ατ(v) + βτ(u) holds.
τ(0) = 0.

Operations with linear transformations
sum - τ + ϕ : V → U as (τ + ϕ)(v) = τ(v) + ϕ(v),
multiple - γτ : V → U as (ωτ)(v) = ωτ(v),
composition - θ ◦ τ : V → W as (θ ◦ τ)(v) = θ(τ(v)).

Matrix corresponding to lin. transf.
Images of vectors v ∈ V from B in C we write
τ(bj) = α1jc1 + ...+ αnjcn.

Aτ,B,C =


α11 α12 ... α1m

α21 α22 ... α2m

...
...

...
αn1 αn2 ... αnm


is a matrix corresponding to the linear transformation τ from
basis B to basis C . Columns = τ(ui) and rows = cj .
This matrix of a linear transformation has the properties:
Aτ+ϕ,B,C = Aτ,B,C +Aϕ,B,C , Aατ,B,C = αAτ,B,C ,
Aθ◦τ,B,D = Aθ,C ,D ·Aτ,B,C , Aϕ−1,B,C = (Aϕ,B,C )−1.

Eigenvalues of lin. transf.
All matrices corresponding to linear transformation τ have the
same eigenvalues as τ . τ(v) = λv = λI (v) where I is the
identity transf. I : V → V (or (τ − λI )(v) = 0) → kernel of
τ − λI . Linear transformation is diagonalizable ↔ there
exists a basis B of V consisting of eigenvectors of τ .

Kernel and Image
Kernel (ker(τ) = kerτ) is set of all vectors v ∈ V τ(v) = 0.
Image is set im(τ) = imτ = {τ(v) : v ∈ V } ⊆ U . kerτ is a
vector subspace of V and imτ is a vector subspace of U .
Linear transformation is injective if and only if kerτ = 0 or
τ(u) = τ(v) ⇒ u = v.
Linear transformation is surjective if and only if imτ = U .
dim(imτ) = rank(A), dim(kerτ) + dim(imτ) = dim(V ),
dim(kerτ) = dim(N(Aτ )), dim(imτ) = dim(C(Aτ )),
kerτ ↔ N(A) in basis B and imτ ↔ C(A) in basis C .
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