Mathematics 1: First midterm Cheat-Sheet (Theory)

Linear Algebra

Basics

 $N(A) = \{ \vec{x} \in \mathbb{R}^n : A\vec{x} = \vec{0} \}.$ $C(A) = \mathcal{L}\{A^{(1)}, ..., A^{(n)}\} = \{A\vec{x} : \vec{x} \in \mathbb{R}^n\}, N(A^T) = C(A)^T$ and $N(A)^{\perp} = C(A^T)$. Eigenvalues - $\Delta A(x) = det(A - xI).$ Eigenvectors - $A\vec{x} = \lambda \vec{x} \leftrightarrow (A - \lambda I)\vec{x} = 0$, non zero solution $det(A - \lambda I) = 0$ or $rank(A - \lambda I)$ not full and $\vec{x} = N(A - \lambda I)$. Computing the inverse of a matrix: $[A \mid I] \to Gauss \to [I \mid A^{-1}].$ $Q \in \mathbb{R}^{n \times m}$ is orthogonal $\leftrightarrow Q = [\vec{q_1}, ..., \vec{q_n}],$ $\vec{q}_i \cdot \vec{q}_j = 0 \leftrightarrow \vec{q}_i^T \vec{q}_j = 0$ (pairwise orthogonal), $||\vec{q}_i|| = 1$. $Q^T Q = I \leftrightarrow Q^{-1} = Q^T.$ $\begin{array}{l} A \in \mathbb{R}^{2 \times 2} \dots det(A) = a_{11}a_{22} - a_{12}a_{21}. \\ A \in \mathbb{R}^{3 \times 3} \dots det(A) = a_{11}det(A_{x_1}) - a_{12}det(A_{x_2}) + a_{13}det(A_{x_3}). \end{array}$ A invertible $\leftrightarrow det(A) \neq 0$, $det(A) = \lambda_1 \cdot \ldots \cdot \lambda_n$ and $\lambda_i \neq 0$. A symmetric diagonalized: $A = PDP^{-1} = QDQ^T$. A symmetric, if eigenvalues are real, eigenvectors are orthogonal, full set of independent eigenvectors. Full column rank \leftrightarrow columns are lin. independent.

Trace

 $tr(A) = \sum_{i=1}^{n} a_{i,i}, \text{ properties:}$ $tr(\alpha A) = \alpha tr(A), tr(A + B) = tr(A) + tr(B), tr(A^T) = tr(A),$ $tr(AB) = tr(BA), tr(PAP^{-1}) = tr(A)$ (P invertible), tr(ABC) = tr(CAB) = tr(BCA) (order remains).

Rank

rank(A) = rk(A) is the number of pivots in reduced row echelon form = number of linearly independednt rows = dim.of the linear span of rows of A = number of lin. independent columns = dim of the lin. span of columns of A = dimC(A)= n - dim N(A) = size of the largest invertible square sumbatrix of A.

Matrix similarity

 $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$ are similar if exists invertible matrix $P \in \mathbb{R}^{n \times n}$ such that $A = PBP^{-1}$. Similar matrices have the same trace, determinant, characteristic polynomial, eigenvalues and rank. Matrix is diagonalizable if it is similar to some diagonal matrix $A = PDP^{-1}$. The diagonal values of matrix D are eigenvalues of matrix A and the columns of matrix P are eigenvectors of matrix A. $A, B \in \mathbb{R}^{n \times n}$ are orthogonally similar if $A = QBQ^{-1} = QBQ^T$ where $Q \in \mathbb{R}^{n \times n}$ is orthogonal matrix.

Schur's Theorem

 $A \in \mathbb{R}^{n \times n}$ has \mathbb{R} eigenvalues $\lambda_1, ..., \lambda_n$, exists an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$, that $Q^T A Q$ is upper (or lower) triangular $n \times n$ matrix with diagonal entries λ_i . Matrix A is of the form QDQ^T where D is a diagonal matrix with eigenvalues of A on the diagonal and Q is an orthogonal matrix. If matrix A has eigenvalues $\lambda_1, ..., \lambda_n$ then $tr(A) = \lambda_1 + ... + \lambda_n$ and $det(A) = \lambda_1 \dots \lambda_n$.

Frobenius norm

Scalar (inner) product $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{m \times n}$ is $\langle A, B \rangle = tr(A^{T}B)$ with properties: $\langle A, B \rangle = \langle B, A \rangle, \langle \alpha A + \beta B, C \rangle = \alpha \langle A, C \rangle + \beta \langle B, C \rangle,$ for all $\alpha, \beta \in \mathbb{R}, \langle A, A \rangle > 0, \langle A, A \rangle = 0 \leftrightarrow A = 0$, For matrices $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{m \times k}$ and $C \in \mathbb{R}^{k \times n}$ we have $\langle A, BC \rangle = \langle B^T A, C \rangle = \langle AC^T, B \rangle.$ $A = [a_{i,j}] \in \mathbb{R}^{m \times n} \to ||A||_F = ||A|| = \sqrt{\langle A, A \rangle} =$ $\sqrt{tr(A^T A)} = ||vec(A)||. \ \sigma_1, ..., \sigma_k \text{ are singular values of } A,$ $||A||_F = \sum_{i=1}^{rkA} \sigma_i^2 = tr(A^T A), \ A^T A \in \mathbb{R}^{n \times n}, \ \lambda_i = \sigma_i^2.$

Kronocker Product

 $\begin{bmatrix} a_{11}B & a_{12}B & \dots & a_{1n}B \end{bmatrix}$ $a_{2n}B$ $\in \mathbb{R}^{mp \times nq}$ $A \otimes B =$ $\begin{bmatrix} a_{m1}B & a_{m2}B & \dots & a_{mn}B \end{bmatrix}$ **Properties:** 1. $0 \otimes A = A \otimes 0 = 0$ 2. $\alpha \otimes A = A \otimes \alpha = \alpha A, \forall \alpha \in \mathbb{R}$ 3. $(\alpha A) \otimes B = A \otimes (\alpha B) = \alpha (A \otimes B)$ 4. $(A+B) \otimes C = A \otimes C + B \otimes C$ and $A \otimes (B + C) = A \otimes B + A \otimes C$ 5. $(A \otimes B)^T = A^T \otimes B^T$ 6. $(A \otimes B) \otimes C = A \otimes (B \otimes C)$ 7. $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$ 8. $||A \otimes B||_F = ||A||_F ||B||_F$ 9. If $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{m \times m}$, then $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$ 10. If $A \in \mathbb{R}^{n \times n}$ has eigenvalues $\lambda_1, \ldots, \lambda_m$ and B has eigenvalues μ_1, \ldots, μ_n then the set of eigenvalues of $A \otimes B$ is equal to $\{\lambda_i \mu_i\}$ 11. If $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{m \times m}$, then $tr(A \otimes B) = tr(A)tr(B)$ 12. If $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{m \times m}$, then $det(A \otimes B) = (\det A)^m (\det B)^n$ 13. $rank(A \otimes B) = rank(A) rank(B)$ 14. If $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$ and $C \in \mathbb{R}^{p \times r}$, then $vec(ABC) = (C^T \otimes A)vec(B)$

PSD matrices

Matrix quadratic form

Quadratic form of $A \in \mathbb{R}^{n \times n}$:

$$\vec{x}^T A \vec{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \sum_{j=1}^n \sum_{i=1}^n a_{ij} x_i x_j.$$

 $\begin{aligned} A &= QDQ^T \to x^T A x = u^T D u \text{ where } u = Q^T x \text{ and } \\ u^T D u &= \lambda_1 u_1^2 + \ldots + \lambda_n u_n^2. \\ \text{A symmetric matrix } A \in \mathbb{R}^{n \times n} \text{ is:} \end{aligned}$

Positive semidefinite (PSD) if $x^T A x > 0 \forall x \in \mathbb{R}^n$ or \leftrightarrow all eigenvalues of A are non-negative.

Positive definite (PD) if $x^T A x > 0 \forall$ nonzero $x \in \mathbb{R}^n$ or \leftrightarrow all eigenvalues of A are positive (det(A) > 0).

Negative semidefinite (NSD) if $x^T A x < 0 \forall x \in \mathbb{R}^n$ or \leftrightarrow all eigenvalues of A are non-positive.

Negative definite (ND) if $x^T A x < 0 \forall$ nonzero $x \in \mathbb{R}^n$ or \leftrightarrow all eigenvalues of A are negative.

Indefinite if $x^T A x > 0$ for some $x \in \mathbb{R}^n$ and $y^T A y < 0$ for some $u \in \mathbb{R}^n$ or $\leftrightarrow A$ has positive and negative eigenvalues.

Svlvester

A symmetric matrix A is PD if and only if the determinant of each leading principal submatrix is positive and PSD when its non-negative. A symmetric matrix A is ND if and only if the determinant of the $k \times k$ leading principal submatrix is positive if k is even and negative if k is odd.

Cholesky decomposition

QR decomposition: Q is orthogonal matrix of B and R is upper triangular matrix of coefficients.

 $A = BB^T = (QR)^T QR = R^T Q^T QR = R^T R = LL^T.$ For invertible, (symmetric) and PSD matrix $A \in \mathbb{R}^{n \times n}$ we have *Decomposition algorithm*:

Write
$$A_1 := A = \begin{bmatrix} a_{11} & \vec{b}^T \\ \vec{b} & B \end{bmatrix}$$
, define $L_1 := \begin{bmatrix} \sqrt{a_{11}} & \vec{0}^T \\ \frac{1}{\sqrt{a_{11}}} \vec{b} & I_{n-1} \end{bmatrix}$.
 $A_1 = L_1 \begin{bmatrix} 1 & \vec{0}^T \\ \vec{0} & B - \frac{1}{a_{11}} \vec{b} \vec{b}^T \end{bmatrix} L_1^T$.
Repeat this on $A_2 := B - \frac{1}{\sqrt{b}} \vec{b}^T \in \mathbb{R}^{(n-1) \times (n-1)}$.

If $L_1, L_2, ..., L_3$ are the matrices obtained in this way then: $L = L_1 \cdot \begin{bmatrix} 1 & \vec{0}^T \\ \vec{0} & L_2 \end{bmatrix} \cdot \ldots \cdot \begin{bmatrix} I_{n-1} & \vec{0}^T \\ \vec{0} & L_n \end{bmatrix}.$

If one of these steps fails then the matrix A is not PSD.

Vector Spaces

Vector space

V is a set of vectors $v \in V$ with two inner operations: addition - $u, v \in V \Rightarrow u + v \in V$ and scalar multiplication $v \in V, \alpha \in \mathbb{R} \Rightarrow \alpha v = \alpha \cdot v \in V.$ There exists a zero vector 0 and v + 0 = v and for each $v \in V$ exists an inverse vector -v, such that v + (-v) = 0. $1 \cdot v = v, \ (\alpha\beta) \cdot v = \alpha \cdot (\beta \cdot v), \ (\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v,$ $\alpha \cdot (u+v) = \alpha \cdot v + \alpha \cdot u$, for all $u, v, w \in V$ and $\alpha, \beta \in \mathbb{R}$. Zero vector 0 is unique, 0v = 0 and $\alpha 0 = 0$. *Linear combination of vectors*: vector of the form $\alpha_1 v_1 + \ldots + \alpha_n v_n$.

Vector subspaces

Subset U of a VS V is a vector subspace if its *closed under* linear combinations $\alpha u + \beta v \in U$. Linear span $\mathscr{L}\{v_1, ..., v_n\}$ is the set of all linear combinations. It is the smallest vector subspace containing vectors $v_1, ..., v_n$.

Basis of a vector space

Vectors v_1, \ldots, v_n are linearly dependent if $\exists v_k$, written as a linear combination

 $v_k = \alpha_1 v_1 + \ldots + \alpha_{k-1} v_{k-1} + \alpha_{k+1} v_{k+1} + \ldots + \alpha_n v_n$ and *linearly independent* if it doesn't exist. Vectors v_1, \ldots, v_n are linearly independent if the only linear combination equal to 0 is $\alpha_1 v_1 + \ldots + \alpha_n v_n = 0 \leftrightarrow \alpha_1 = \ldots = \alpha_n = 0.$

The set of vectors $\mathscr{B} = \{v_1, ..., v_n\} \subseteq V$ is a *basis* of V if $v_1, ..., v_n$ are linearly independent and $\mathscr{L} = \{v_1, ..., v_n\}$ span V. The number of elements in any basis of vector space V is by $\dim V$ ($\dim \mathbb{R}^n = n; \dim \mathbb{R}^{n \times m} = nm; \dim \mathbb{R}_n[x] = n + 1$).

Linear transformations

Transformation $\tau : V \to U$ is linear if $\tau(u+v) = \tau(u) + \tau(v)$ and $\tau(\alpha v) = \alpha \tau(v) \leftrightarrow \tau(\alpha v + \beta u) = \alpha \tau(v) + \beta \tau(u)$ holds. $\tau(0) = 0.$

Operations with linear transformations

 $sum - \tau + \phi : V \to U \text{ as } (\tau + \phi)(v) = \tau(v) + \phi(v),$ multiple - $\gamma \tau : V \to U \text{ as } (\omega \tau)(v) = \omega \tau(v),$ composition - $\theta \circ \tau : V \to W \text{ as } (\theta \circ \tau)(v) = \theta(\tau(v)).$

Matrix corresponding to lin. transf.

Images of vectors $v \in V$ from \mathscr{B} in \mathscr{C} we write $\tau(b_j) = \alpha_{1j}c_1 + \ldots + \alpha_{nj}c_n.$

 $A_{\tau,\mathscr{B},\mathscr{C}} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1m} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2m} \\ \vdots & \vdots & & \vdots \\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nm} \end{bmatrix}$

is a matrix corresponding to the linear transformation τ from basis \mathscr{B} to basis \mathscr{C} . Columns $= \tau(u_i)$ and rows $= c_j$. This matrix of a linear transformation has the properties: $A_{\tau+\phi,\mathscr{B},\mathscr{C}} = A_{\tau,\mathscr{B},\mathscr{C}} + A_{\phi,\mathscr{B},\mathscr{C}}, A_{\alpha\tau,\mathscr{B},\mathscr{C}} = \alpha A_{\tau,\mathscr{B},\mathscr{C}}, A_{\theta\circ\tau,\mathscr{B},\mathscr{D}} = A_{\theta,\mathscr{C},\mathscr{D}} \cdot A_{\tau,\mathscr{B},\mathscr{C}}, A_{\phi^{-1},\mathscr{B},\mathscr{C}} = (A_{\phi,\mathscr{B},\mathscr{C}})^{-1}.$

Eigenvalues of lin. transf.

All matrices corresponding to linear transformation τ have the same eigenvalues as τ . $\tau(v) = \lambda v = \lambda \mathscr{I}(v)$ where \mathscr{I} is the identity transf. $\mathscr{I}: V \to V$ (or $(\tau - \lambda \mathscr{I})(v) = 0$) \to kernel of $\tau - \lambda \mathscr{I}$. Linear transformation is diagonalizable \leftrightarrow there exists a basis \mathscr{B} of V consisting of eigenvectors of τ .

Kernel and Image

Kernel $(ker(\tau) = ker\tau)$ is set of all vectors $v \in V \tau(v) = 0$. Image is set $im(\tau) = im\tau = \{\tau(v) : v \in V\} \subseteq U$. $ker\tau$ is a vector subspace of V and $im\tau$ is a vector subspace of U. Linear transformation is injective if and only if $ker\tau = 0$ or $\tau(u) = \tau(v) \Rightarrow u = v$.

Linear transformation is surjective if and only if $im\tau = U$. $dim(im\tau) = rank(A), dim(ker\tau) + dim(im\tau) = dim(V),$ $dim(ker\tau) = dim(N(A_{\tau})), dim(im\tau) = dim(C(A_{\tau})),$ $ker\tau \leftrightarrow N(A)$ in basis \mathscr{B} and $im\tau \leftrightarrow C(A)$ in basis \mathscr{C} .