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Chapter 1

Linear algebra

1.1 A recollection of basic concepts

Problem 1.1 (solution 1.1)

Determine the eigenvalues and corresponding eigenvectors of the matrix

A =

 0 2 2
3 1 −3
−1 −1 3


Problem 1.2 (solution 1.2)

Determine the eigenvalues and orthogonal bases corresponding eigenvectors
of the matrix

H =


1 1 1 0
1 0 0 1
1 0 0 −1
0 1 −1 1


Problem 1.3 (solution 1.3)

Let A be an n×n matrix. One way to define the exponential of the matrix A is

eA :=
∞∑
k=0

1
k!
Ak

(we substituted x ∈R with A in the Taylor series for the function ex).
(a) Prove the identity

det(eA) = etr(A)

(b) Assume A is an asymmetrical matrix, meaning AT = −A. Show that eA

is an orthogonal matrix with determinant equal to 1.
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Problem 1.4 (solution 1.4)

You are given an n×n matrix

A =


0 1 · · · 1
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0

 ,

ie. the adjacency matrix of a (undirected) star graph.
(a) Determine the bases of N (A) and C(A), i.e. bases of the null space and

the column space of A.
(b) Determine the eigenvalues and eigenvectors of A.

Hint: Why is N (A) an eigenspace of A? Why is N (A)⊥ the sum of other
eigenspaces of A?

Problem 1.5 (solution 1.5)

The following is known about a symmetric matrix A ∈R4×4: A has 3 as a double
eigenvalue and it interchanges the vectors

v1 =


0
1
1
0

 and v2 =


1
0
0
1

 ,

i.e. Av1 = v2 and Av2 = v1. Find such a matrix A or prove that it does not exist!

1.2 Schur decomposition, Frobenius norm, Eckart–
Young theorem

Problem 1.6 (solution 1.6)

Determine the Schur decompositions of matrices

A =

6 −1 1
4 3 1
2 2 3

 and B =

 2 −1 0
0 1 0
−
√

2 −
√

2 2

 .

Problem 1.7 (solution 1.7)

Let A be an arbitrary matrix and let U and V be orthogonal matrices, so that
one can form the product UAV . Prove that the following equalities hold:

1. ∥UA∥F = ∥A∥F,

2. ∥AV ∥F = ∥A∥F,
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3. ∥UAV ∥F = ∥A∥F.

Problem 1.8 (solution 1.8)

Denote by ⟨A,B⟩F := tr(ATB) the Frobenius inner product of matrices A,B ∈
R
m×n, and denote by ∥A∥F :=

√
⟨A,A⟩F the corresponding Frobenius norm. Prove:

1. the Cauchy–Schwarz inequality, |⟨A,B⟩F| ≤ ∥A∥F∥B∥F,

2. the triangle inequality, ∥A+B∥F ≤ ∥A∥F + ∥B∥F.

3. submultiplicativity, ∥AB∥F ≤ ∥A∥F∥B∥F.

4. multiplicativity for the Kronecker product, ∥A⊗B∥F = ∥A∥F∥B∥F

Problem 1.9 (solution 1.9)

Let I be the 2 × 2 identity matrix. Find an orthonormal basis of orthogonal
complement of I , I⊥ ≤ R

2×2, with respect to the (Frobenius) inner product
⟨A,B⟩F := tr(ATB).

Problem 1.10 (solution 1.10)

Find rank 1 matrices closest (with respect to the Frobenius norm) to the matri-
ces:

(a)

2 0 0
0 −3 0
0 0 1

, (b)
[
1 3
3 1

]
, (c)

[
2 0
0 2

]
.

Are those rank 1 matrices unique?

Problem 1.11 (solution 1.11)

Let A ∈Rm×m and B ∈Rn×n. Show that the Kronecker sum

A⊕B := A⊗ In + Im ⊗B

has the property: Eigenvalues of A⊕B are all possible sums of the form λi +µj ,
where λ1, . . . ,λm are eigenvalues of A, and µ1, . . . ,µn eigenvalues of B.

Use this to find eigenvalues and eigenvectors of A⊕B, where

A =
[
−1 2
0 3

]
and B =

[
1 0
2 2

]
.

Problem 1.12 (solution 1.12)

Let

A =
[
2 2
2 −1

]
.
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(a) Determine a diagonal matrix D and an orthogonal matrix U such that
A =UDUT.

(b) Explain why for an orthogonal matrix U the matrix U ⊗U is also orthog-
onal.

(c) Find matrices of rank 1 and 2 which are best approximations to the Kro-
necker product A⊗A w.r.t. the Frobenius norm.

Problem 1.13 (solution 1.13)

Find the eigenvalues and corresponding eigenvectors of the matrixA⊗A+A2⊗I ,
where A is the matrix

A =
[
−1 3
3 −1

]
.

Problem 1.14 (solution 1.14)

The objective of this exercise is to express the Sylvester matrix equation AX +
XB = C in the ‘usual’ form (Âx = b) using the vec operator and then solve this
equation.

(a) Confirm that the matrix equation AX +XB = C in the unknown matrix X
is equivalent to the linear system

(BT ⊕A)vec(X) = vec(C)

in the unknown column vec(X).

(b) Let A and B be 2× 2 matrices

A =
[
−1 2
0 3

]
and B =

[
1 0
2 2

]
.

Does AX + XB = 0 posses a non-trivial solution? (You need to answer
quickly! Do not attempt to solve the corresponding linear system. . . )

(c) Find a matrix X which solves

AX +XB =
[
−2 1
2 5

]
.

Problem 1.15 (solution 1.15)

Let A ∈Rn×n be a matrix with only nonnegative eigenvalues.

(a) Prove that A is invertible if and only if all of its eigenvalues are (strictly)
positive.

(b) Assume A is invertible. Prove that all of its eigenvalues of A are positive
if and only if all of the eigenvalues of A−1 are positive.
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(c) Assume AT = A. Prove that there exists a matrix S, with only nonnegative
eigenvalues and S2 = A holds. We denote such matrix S as S =

√
A.

Problem 1.16 (solution 1.16)

You are given the matrix

A =

2 3 1
3 6 3
1 3 2

 .

(a) Check that A is positive semidefinite.

(b) Find all eigenvalues and corresponding eigenvectors of A.

(c) Find
√
A.

Problem 1.17 (solution 1.17)

Find the Cholesky decomposition (A = LLT, where L is lower triangular) of the
matrix

A =

 1 2 −1
2 8 2
−1 2 6


using (recursive) algorithm below:
Write a symmetric matrix A ∈Rn×n in the block form

A1 := A =
[
a11 bT

b B

]
and define

L1 :=
[√
a11 0T

1√
a11

b In−1

]
.

Then

A1 =
[
a11 bT

b B

]
= L1

[
1 0T

0 B− 1
a11

bbT

]
LT1 .

Repeat this on the symmetric matrix A2 := B− 1
a11

bbT ∈R(n−1)×(n−1).
Let L2,L3, . . . ,Ln be the matrices obtained in repeated steps. The matrix L is
then

L = L1 ·
[
1 0T

0 L2

]
· · ·

[
In−1 0
0T Ln

]
. (1.2)
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Chapter 2

Vector spaces and linear maps

2.1 Vector spaces

Problem 2.1 (solution 2.1)

Which subsets of the vector space R
n×n—all real n × n matrices—are vector

subspaces? Determine the dimension of those that are.
(a) All matrices, which have 0 as the (1,2)-entry.
(b) All matrices, which have 1 as the (1,2)-entry.
(c) All matrices with integer entries, i.e. for A = [aij ] we have aij ∈Z.
(d) All upper-triangular matrices.
(e) All symmetric matrices; A = AT.
(f) All antisymmetric matrices; A = −AT.
(g) All invertible matrices; the subset GL(n,R) ⊆R

n×n.
(h) All matrices with determinant 0, i.e. Rn×n ∖GL(n,R).
(i) All nilpotent matrices, ie. matrices N ∈Rn×n such that Nn = 0.
(j) All upper-triangular nilpotent matrices. (Hint: Which elements appear

on the diagonal of an upper-triangular nilpotent matrix?)
(k) All matrices with trace 0.

Problem 2.2 (solution 2.2)

Let F be the set of all Fibonacci sequences, i.e. sequences

(an)∞n=0 = (a0, a1, a2, . . .),

where a0 and a1 are arbitrary real numbers, and an = an−1 + an−2 holds for all
n ≥ 2.

(a) Show that F is a vector space under operations

(an) + (bn) := (an + bn) and α(an) := (αan),

where α ∈R.

9
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(b) Find a basis for F and express the usual Fibbonacci sequence (the one
with a0 = a1 = 1) in this basis.

Problem 2.3 (solution 2.3)

Equip the open interval R+ = (0,∞) with the operation x ⊕ y := xy, and define
α ⊙ x = xα for scalars α ∈R.

(a) Show that (R+,⊕,⊙) is a vector space over R.
(b) Find a basis for (R+,⊕,⊙) and determine its dimension.

Problem 2.4 (solution 2.4)

Let N be the matrix

N =
[
0 0
1 0

]
.

Show that the set of all real 2× 2 matrices which commute with N , i.e.

U = {A ∈R2×2 : AN =NA},

is a vector subspace in R
2×2. Find a basis for U and determine its dimension!

Problem 2.5 (solution 2.5)

(a) Is the set U1 = {p(x) = ax+ b : a , 0, a,b ∈R} a vector subspace in the vec-
tor space of polynomials R1[x]?

(b) Is the set U2 = {p(x) : p(0) = 0} a vector subspace in the vector space of
polynomials R2[x]?

(c) Is the set U3 = {p(x) : p(0) = 1} a vector subspace in the vector space of
polynomials Rn[x]?

(d) Is the set U4 = {p(x) : p′′(3) = 0 } a vector subspace in the vector space of
polynomials Rn[x]?

Problem 2.6

For a polynomial p(x) = ax3 + bx2 + cx + d and a square matrix A denote p(A) =
aA3 + bA2 + cA+ dI . Let A ∈R2×2 be the matrix

A =
[
1 2
2 1

]
.

Let U ⊆ R3[x] be the subset of those polynomials (of degree at most 3), for
which p(A) = 0 (the zero matrix).

(a) Show that U is a vector subspace of R3[x].
(b) Find a basis for U and determine dimU .

(Hint: If ∆A(x) is the characteristic polynomial of A, then ∆A(A) = 0.)
(c) Let q(x) = x(x2 − 2x − 3). Is the set of all 2 × 2 matrices X, for which

q(X) = 0 holds, a vector subspace of R2×2? Justify your answer!



2.2. LINEAR MAPS 11

Problem 2.7 (solution 2.7)

Let R[x] be the set of all polynomials in the indeterminate x. (Hence, R[x] con-
tains polynomials of arbitrary degrees!) Show that R[x] is a vector space for the
usual addition of polynomials and multiplication of a scalar and a polynomial.
Can you describe a basis for R[x]? Can you find a basis for the subspace

W = {p ∈R[x] : p(1) = p(−1) = 0}?

Determine dimR[x] and dimW .

Problem 2.8 (solution 2.8)

Let R[[x]] be the set of all formal power series with real coefficients, the ele-
ments of R[[x]] are the (formal) sums

f (x) =
∞∑
k=0

akx
k = a0 + a1x+ a2x

2 + · · · ,

which are added and multiplied by a scalar component wise. Check that R[[x]]
too is a vector space. How is R[[x]] different from R[x]? Can you find a basis
for R[[x]]?

Problem 2.9 (solution 2.9)

Let V ⊆ C∞(0,2π) be the set of all solutions to the differential equation

y′′ + y = 0.

Show that V is a vector subspace of C∞(0,2π). Find its basis.

2.2 Linear maps

Problem 2.10 (solution 2.10)

A map τ : R2×2→R
2×2 is given by

τ(X) =
[
1 1
1 0

]
X +X

[
1 1
1 0

]
.

(a) Show that τ is a linear map.
(b) Find the matrix corresponding to τ with respect to the standard basis
{E11,E12,E21,E22} of the vector space R

2×2.

Problem 2.11 (solution 2.13)

For a polynomial p(x) = ax3 +bx2 + cx+d, and a square matrix A denote p(A) =
aA3 + bA2 + cA+ dI . Let A ∈R2×2 be the matrix

A =
[
1 2
2 1

]
.
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(a) Show that the map given by

φ : R3[x]→R
2×2, φ(p) = p(A)

is linear and determine the matrix corresponding to φ in the standard
bases of spaces R3[x] and R

2×2.
(b) Find a basis for kerφ and determine dim(kerφ). (Hint: If ∆A(λ) is the

characteristic polynomial of A, then ∆A(A) = 0.)
(c) Let q(x) = x(x2 − 2x − 3). Is the set of all 2 × 2 matrices X, for which

q(X) = 0 holds, a vector subspace of R2×2?

Problem 2.12 (solution 2.12)

We are given vectors a = [1,1,0]T, b = [1,0,1]T, and c = [0,1,1]T in R
3, and a

linear map τ : R3→R
3 for which

τ(a) = a, τ(b) = a+b, and τ(c) = a+ c

holds.
(a) Show that {a,b,c} is a basis of R3.
(b) Find the matrix for τ in the basis B = {a,b,c}.
(c) Find the matrix for τ in the standard basis S = {i, j,k}.
(d) Where does the vector [1,1,1]T get mapped by τ?

Problem 2.13 (solution 2.13)

Let R3[x] be the vector space of polynomials p of degree at most 3.
(a) Check that the map φ : R3[x]→R

3, φ(p) := [p(−1),p(0),p(1)]T is linear.
(b) Find a basis Bkerφ for the kernel kerφ of the map φ.

(c) Find the matrix corresponding to φ in the basis {1,x,x2,x3} of R3[x] and
the standard basis of R3.

Problem 2.14 (solution 2.14)

A map ψ : R2[x]→R2[x] is given by

(ψ(p))(x) = (xp(x+ 1))′ − 2p(x).

Show that ψ is linear. Find its matrix in the basis {1,x,x2}. Find its kernel and
image.

Problem 2.15 (solution 2.15)

Let a = [1,1]T. A map φ : R2→R
2×2 is given by

φ(x) = xaT = x [1,1].

(a) Show that φ is linear.
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(b) Find the matrix corresponding to φ in the standard bases of R
2 and

R
2×2.

(c) Determine dim(kerφ) and dim(imφ).
(d) Find a basis of imφ.

Problem 2.16 (solution 2.16)

Assume that U and V are vector subspaces of a vector space W . Define sets:

U ×V := {(u,v) : u ∈U,v ∈ V },
U +V := {u + v : u ∈U,v ∈ V }, and

U ∩V := {w ∈W : w ∈U in w ∈ V }.

(a) Confirm that U +V and U ∩V are vector subspaces of W .
(b) ‘Guess’ the appropriate vector space structure onU×V . Prove thatU×V

is actually a vector space in the guessed case! Determine dim(U × V )
from dimU and dimV .

(c) Let a map φ : U ×V →W be given by φ(u,v) = u − v. Confirm that φ is
linear. (If it turns out, that it is not, return to part (b).) Determine kerφ
and imφ.

(d) Show that the map ψ : U ∩V → kerφ, ψ(w) = (w,w) is a linear bijection,
therefore dim(U ∩V ) = dim(kerφ).

(e) Conclude that dimU + dimV = dim(U +V ) + dim(U ∩V ).
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Chapter 3

Functions of several variables

3.1 Multiple integrals

Problem 3.1 (solution 3.1)

Let a vector–valued function F : R2→R
2 be given by F(r) = F(r,ϕ) = [x,y]T = x,

where

x = r cosϕ,

y = r sinϕ.

Find the Jacobi matrix JF = ∂F
∂r and the Jacobi determinant det(JF) of F.

Problem 3.2 (solution 3.2)

Let a vector–valued function F : R3→R
3 be given by F(r) = F(r,ϕ,z) = [x,y,z]T =

x, where

x = r cosϕ,

y = r sinϕ,

z = z.

Find the Jacobi matrix JF = ∂F
∂r and the Jacobi determinant det(JF) of F.

Problem 3.3 (solution 3.3)

Let F : R3→R
3, r 7→ x be a vector–valued function given by F(r,ϕ,θ) := [x,y,z]T,

where:

x = r cosθ cosϕ,

y = r cosθ sinϕ,

z = r sinθ.

Find the Jacobi matrix JF = ∂F
∂r and the Jacobi determinant det(JF) of F.

15
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Problem 3.4

Let R ≥ 0, and let F : R3→R
3 be a vector–valued function given by

F(r,ϕ,θ) = F
(
[r,ϕ,θ]T

)
=

(R+ r cosθ)cosϕ
(R+ r cosθ)sinϕ

r sinθ

 .

1. Find the Jacobi matrix F; JF = ∂F
∂[r,ϕ,θ]T

of F.

2. Find the determinant of that Jacobi matrix; det(JF).

Problem 3.5 (solution 3.5)

Evaluate double integrals below.

(a)
"

D
(5− x − y)dxdy, where D = [0,1]× [0,1],

(b)
"

D

y

x+ 1
dxdy, where D is given by x ≥ 0, y ≥ x in x2 + y2 ≤ 2,

(c)
"

D

sinx
x

dxdy, where D is the triangle given by 0 ≤ y ≤ x, and x ≤ π,

(d)
"

R
2
e−x

2−y2
dxdy, and use this to evaluate

∫ ∞
−∞
e−x

2
dx.

Problem 3.6

Sketch the domain of integration and evaluate the integrals.

1.
∫ 1

0

∫ x

−x
xeydy

dx,

2.
∫ 1

0

∫ y

0

y

x+ 1
dx

dy +
∫ √2

1

∫
√

2−y2

0

y

x+ 1
dx

dy.

Problem 3.7 (solution 3.7)

What is the volume of the solid bounded by the paraboloid z = 8− x2 − y2 and
the plane z = −1?

Problem 3.8 (solution 3.8)

Find the coordinates of the center of mass of the quarter of a disk given by
inequalities x2 + y2 ≤ R2, x ≥ 0, y ≥ 0 if the density at each point is equal to the
distance from the origin, ie. ρ(x,y) =

√
x2 + y2.

Hint: the mass of a figure D ⊆ R
2 is given by m =

!
D
ρ(x,y)dxdy, coordinates

of the center of mass are x∗ = 1
m

!
D
xρ(x,y)dxdy and y∗ = 1

m

!
D
yρ(x,y)dxdy.

Use polar coordinates.
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Problem 3.9 (solution 3.9)

Determine the mass and the coordinates of the center of mass of a homoge-
neous solid (ie. ρ(x,y,z) = 1) bounded by surfaces z2 = x2+y2 and x2+y2+z2 = 4,
which lies in the half-space z ≥ 0.
Hint: Use spherical coordinates:

x = r cosθ cosϕ,

y = r cosθ sinϕ,

z = r sinθ,

ie. a ‘new variable’ F(r,ϕ,θ) = [x,y,z]T (for which det(JF) = r2 cosθ holds.)

Problem 3.10 (solution 3.10)

Determine the mass and the coordinates of the center of mass of a ball given by
inequality x2 + y2 + z2 ≤ 2z if the density at every point is equal to the distance
from the origin.
Hint: Use spherical coordinates.

Problem 3.11 (solution 3.11)

A solidD ⊆R
3 is bounded by parabolic cylinders z = 2−x2 and z = y2−2. Deter-

mine the volume and mass of this solid if the density is given by ρ(x,y,z) = y2.
Hint: Find the (orthogonal) projection of this solid onto the xy-plane, use cylin-
drical coordinates.

3.2 Local extrema of real multivariate functions

Problem 3.12 (solution 3.12)

Find and classify the stationary points of functions below.
(a) f (x,y) = x3 − 4x2 + 2xy − y2

(b) g(x,y) = xex + 2yey + 1
(c) h(x,y) = (1 + ey)cosx − yey

(d) k(x,y,z) = x3 + y3 + 3z2 − 3xyz
(e) r(x,y,z) = x2 + y2 + z2 − 2xyz
(f) u(x,y) = 4 + x3 + y3 − 3xy
(g) v(x,y) = 3x2y + y3 − 3x2 − 3y2

Problem 3.13 (solution 3.13)

Given a,b ∈Rn let f (x) = (xTa)(xTb).

(a) Evaluate ∂f
∂x and ∂2f

∂x2 .
(b) Additionally assume that a and b are nonzero and orthogonal. What is

the type of the lone stationary point of f in this case?
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Problem 3.14 (solution 3.14)

Find the vector x ∈ R
n for which the sum of squared distances from given

vectors a1, . . . ,ak ∈Rn is the smallest possible.

3.3 Constrained extrema

Problem 3.15 (solution 3.15)

Find the points in the domain described by the inequality

4(x − 1)2 + y2 ≤ 16,

at which the largest and least values of the function

f (x,y) = 2x2 + y2

are attained.

Problem 3.16 (solution 3.16)

Let T be the triangle which is the intersection of the first octant and the plane
given by x+ y + z = 5. At which point on this triangle is the largest value of the
function g(x,y,z) = xy2z2 attained?

Problem 3.17 (solution 3.17)

Find all points on the ellipse given by

x2 − xy + y2 = 3,

which are farthest from the origin.

Problem 3.18 (solution 3.18)

Which points on the curve given implicitly by

(x2 + y2)2 = x3 + y3

are farthest from the origin?

Problem 3.19 (solution 3.19)

Find the largest and the least value of the function f (x,y) = xy − y + x − 1

(a) on the disk given by x2 + y2 ≤ 2,
(b) on the half-disk given by x2 + y2 ≤ 2 and x ≥ 0.

Problem 3.20 (solution 3.20)
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An ellipsoid is given by the equation

x2

a2 +
y2

b2 +
z2

c2 = 1.

A box with edges parallel to x, y, and z axes is inscribed inside this ellipsoid.
(a) What is the largest possible volume of the inscribed box?
(b) What is the largest possible surface area of the inscribed box?

Problem 3.21 (solution 3.21)

We are given an ℓ meters long thin rod. We cut it into 12 shorter rods, from
which a frame of a box can be assembled.

(a) How long should those shorter rods be if the box is to have largest pos-
sible volume?

(b) Same question as above with an additional restriction – the base rectan-
gle should have area equal to A.

Problem 3.22 (solution 3.22)

We wish to assemble a frame of a triangular prism (equilateral base triangle)
from an ℓ metres long thin rod.

(a) What should be the length of the pieces we cut our rod into, for the
prism to have largest possible volume?

(b) What should be the length of the pieces we cut our rod into, for the
prism to have largest possible surface area?

Problem 3.23 (solution 3.23)

Let a ∈Rn and let d ≥ 0 be a real number.
(a) Find the largest and least value of the expression aTx for a vector x ∈Rn

with prescribed length ∥x∥ = d.
(b) Explain the solution.

Problem 3.24 (solution 3.24)

Assume A ∈Rn×n, and let d be a positive real number.
(a) Find the largest and least value of f (x) = xTAx with constraint ∥x∥ = d.
(b) Find the largest and least value of f (x) = ∥x∥2 with constraint xTAx = d2

if A is symmetric positive definite.

Problem 3.25 (solution 3.25)

Let A ∈Rn×n, b ∈Rn, and d > 0 a real number.
(a) Minimize f (x) = ∥x∥2 with respect to ∥x−p∥ ≤ d.
(b) Minimize f (x) = ∥x∥2 with respect to Ax = b.
(c) Minimize f (x) = ∥x∥2 with respect to ∥x−p∥ ≤ d and Ax = b.
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Chapter 4

Solutions

Solution to problem 1.1, page 3: First we compute the the characteric polyno-
mial of A.

pA(λ) = det(A−λI) =

∣∣∣∣∣∣∣∣
−λ 2 2
3 1−λ −3
−1 −1 3−λ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
−λ 2 2−λ
3 1−λ 0
−1 −1 2−λ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1−λ 3 0

3 1−λ 0
−1 −1 2−λ

∣∣∣∣∣∣∣∣
= (2−λ)

∣∣∣∣∣1−λ 3
3 1−λ

∣∣∣∣∣
= (2−λ)((1−λ)2 − 9)

= (2−λ)(4−λ)(−2−λ)

The eigenvalues are the roots of the characteristic polynomial (indexed in de-
creasing order)

λ1 = 4, λ2 = 2, λ3 = −2

To find the corresponding eigenvectors we determine the null space

N (A−λI) = {v ∈R3, (A−λI)v = 0}

for each eigenvalue λ, which can be done using Gaussian elimination.

1. For N (A−λ1I) we compute−4 2 2
3 −3 −3
−1 −1 −1

 ∼
1 1 1
1 −1 −1
2 −1 −1

 ∼
1 1 1
0 −2 −2
0 3 3

 ∼
1 0 0
0 1 1
0 0 0


Our homogenous system of equations for the (x,y,z) coordinates are thus
simplified to

x = 0

y + z = 0

21
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We can take z to be the free variable and choosing z = 1 gives an eigen-
vector for λ1 = 4.

v1 =

 0
−1
1


2. For N (A−λ2I) we have−2 2 2

3 −1 −3
−1 −1 1

 ∼
 1 −1 −1

3 −1 −3
−1 −1 1

 ∼
1 −1 −1
0 2 0
0 −2 0

 ∼
1 0 −1
0 1 0
0 0 0


The equations are x − z = 0 and y = 0. Choosing z = 1 gives

v2 =

10
1


3. For N (A−λ3I) we have 2 2 2

3 3 −3
−1 −1 5

 ∼
 1 1 1

1 1 −1
−1 −1 5

 ∼
1 1 1
0 0 −2
0 0 6

 ∼
1 1 0
0 0 1
0 0 0


The equations are x+y = 0, z = 0. This time we take y for the free variable
and the choice y = 1 gives

v3 =

−1
1
0


Solution to problem 1.2, page 3: We know that it will be possible to find an or-
thogonal basis for R4 consisting of eigenvectors of H because H is a symmetric
matrix (HT =H). Computing the characteristic polynomial for H we get

det(H −λI) =

∣∣∣∣∣∣∣∣∣∣
1−λ 1 1 0

1 −λ 0 1
1 0 −λ −1
0 1 −1 1−λ

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1−λ 1 1 0

2 −λ 0 1
0 0 −λ −1

1−λ 1 −1 1−λ

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1−λ 1 1 0

2 −λ 0 1
0 0 −λ −1
0 0 −2 1−λ

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣1−λ 1
2 −λ

∣∣∣∣∣ · ∣∣∣∣∣−λ −1
−2 1−λ

∣∣∣∣∣
= (−(1−λ)λ− 2)2

= (2−λ)2(−1−λ)2
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In addition to the usual rules for computing determinants (addition of multi-
ples of rows/columns to other rows/columns) we used the following rule for
block-upper-diagonal determinants:∣∣∣∣∣A C

0 B

∣∣∣∣∣ = |A| · |B|

where A,B,C and 0 are matrices of appropriate dimensions.
Therefore obtain two distinct eigenvalues λ1,2 = 2 and λ3,4 = −1 which are

both double roots of the characteristic polynomial. Since H is symmetric, we
know we will have two-dimensional eigenspaces for each of the eigenvalues
(for general matrices this is not necessarily the case).

Solution to problem 1.3, page 3:

(a) Let us first assume A is diagonalizable, so that we have

A = PDP −1

where D = diag(λ1, . . . ,λn) is diagonal matrix that contains the eigenval-
ues of A along the diagonal. The powers Ak of the matrix A can then be
expressed as

Ak = PDP −1PDP −1 · · ·PDP −1 = PDkP −1

whereDk = diag(λk1, . . . ,λ
k
n) contains the powers of the eigenvalues along

the diagonal. We use this expression in the power series for eA.

eA =
∞∑
k=0

1
k!
Ak

=
∞∑
k=0

1
k!
PDkP −1

= P

 ∞∑
k=0

1
k!
Dk

P −1

= P · diag(
∞∑
k=0

1
k!
λk1, . . . ,

∞∑
k=0

1
k!
λkn) · P −1

= P · diag(eλ1 , . . . , eλn ) · P −1

In other words, the matrix eA can be diagonalised in the same basis as A,
and its eigenvalues are simply eλ1 , . . . , eλn . Using elementary properties
of determinants, the determinant of eA can then be expressed as

det(eA) = det(P · diag(eλ1 , . . . , eλn ) · P −1)

= det(P ) ·det(diag(eλ1 , . . . , eλn )) ·det(P −1)

= det(diag(eλ1 , . . . , eλn ))

= eλ1 · · ·eλn = eλ1+...+λn

We know that tr(A) equals the sum of the eigenvalues of A which com-
pletes the proof for diagonalizable A.
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For the general case we can use the Schur decomposition

A =UTU ∗

where T is an upper-triangular matrix andU is an unitary matrix (U ∗U =
UU ∗ = I). We know that the upper-triangular matrix in the Schur de-
composition of A also contains the eigenvalues of A on its diagonal. The
proof then follows the same pattern as in the diagonalizable case, with
the difference being that we work with upper-triangular matrices in-
stead of diagonal matrices. However these upper-triangular matrices
that appear contain the same diagonal elements as the diagonal matri-
ces above. Since the matrix elements above the diagonal do not affect
the determinant or the trace, this means the result is the same in the
end.

(b) Using the power series for eA we can directly see that(
eA

)T
= eA

T

For matrices A and B that commute (meaning AB = BA) it is also possi-
ble to show that

eA · eB = eA+B

(This is identity is not valid for matrices that do not commute!). For an
antisymmetric matrix A we then have(

eA
)T
· eA = eA

T
· eA = e−A · eA = e−A+A = e0 = I

since A and −A commute (the zero above denotes the zero matrix), prov-
ing eA is an orthogonal matrix. If AT = −A, then all elements on the
diagonal of A must be equal to zero, implying that tr(A) = 0. Using the
identity from (a) we then have

det(A) = etr(A) = e0 = I

Solution to problem 1.4, page 4:

(a) By performing Gaussian elimination

A =



0 1 · · · 1
1 0 · · · 0
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0


∼



1 0 · · · 0
0 1 · · · 1
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


or by simply looking at the matrix A it is clear that the column space
C(A) is spanned by the first two column vectors. We denote these two
vectors by

u =


0
1
...
1

 and v =


1
0
...
0
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so we can write C(A) = Lin{u,v} and conclude that the dimension of
C(A) equals 2.
This implies that dim(N (A)) = n − 2, which can also be seen from the
row-reduced form of A above. To determine a basis for the null space
N (A), i.e. the subspace of the solutions to the equation Aw = 0, we need
to find n− 2 linearly independent solutions to the system of equations

x1 = 1

x2 + . . .+ xn = 0

where the variables are the coordinates of the unknown vector w =
[x1, . . . ,xn]T. This system of equations can be obtained directly from the
result of Gaussian elimination above or by noticing that A is a symmet-
ric matrix: Since we know that C(A)⊥ =N (AT) =N (A), we can conclude
that w ∈N (A) is equivalent to the condition that w is orthogonal to both
u and v. Writing these conditions with equations, i.e. w · u = 0 and
w · v = 0, using coordinates produces the same equations as above.
The ’free’ variables of this system are x3, . . . ,xn which means we can
choose n − 2 linearly independent solutions by setting xk = 1, xi = 0
for i , k for each choice of k = 3, . . . ,n. The solutions can then be written
as

w3 =



1
−1
1
0
...
0


,w4 =



1
−1
0
1
...
0


. . . ,wn−1 =



1
−1
0
...
1
0


,wn =



1
−1
0
...
0
1


and hence one choice of a basis forN (A) is the set of vectors {w3, . . . ,wn}.

(b) The N (A) subspace is by definition the eigenspace of A for the eigen-
value λ = 0 (at least if N (A) is non-trivial). We can therefore immedi-
ately conclude that we have a n − 2 dimensional eigenspace for eigen-
value λ = 0 spanned by the vectors {w3, . . . ,wn} defined above. Since A
is a symmetric matrix, we know that the algebraic multiplicity of each
eigenvalue is equal to the dimension of corresponding eigenspace. This
means we have (algebraicly) two non-zero eigenvalues yet to be deter-
mined.
It is possible to obtain the remaining two eigenvalues as usual by com-
puting the characteristic polynomial directly and then solving the cor-
responding systems of equations to obtain the eigenvectors. A better
alternative is use the fact that A is a symmetric matrix.
Since we know that the eigenspaces of a symmetric matrix for distinct
eigenvalues are mutually orthogonal, and that the orthogonal comple-
ment of the eigenspace for λ = 0 is N (A)⊥ = C(AT) = C(A) = Lin{u,v},
we can deduce that it must be possible to express the remaining two
eigenvectors as linear combinations of the column vectors u and v.
It therefore makes sense to see how the matrix A acts on the vectors u
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and v. Direct computation produces the equations

Au = (n− 1)v (1.1)

Av = u

There are now at least two ways to proceed from here.

1. Since we know that any eigenvector w of A for any non-zero eigen-
value λ can be written as a linear combination w = xu+ yv, we can
write the eigenvector equation Aw = λw using (1.1) as follows

Aw = A(xu+ yv) = xAu+ yAv = x(n− 1)v+ yu = λ(xu+ yv)

The last equality can be rewritten as

(λx − y)u+ (x(n− 1)−λy)v = 0

Since u and v are linearly independent this implies that both coef-
ficients above must equal 0, which yields a system of equations

λx − y = 0

x(n− 1)−λy = 0

By expressing y = λx from the first equation and plugging into the
second equation we get λ2 = n − 1 or λ1,2 = ±

√
n− 1. (Of course

this system also has an obvious solution for x = y = 0, but this
is not a valid solution in this case because eigenvectors must be
non-zero.) To obtain the eigenvectors for λ1,2 we have freedom to
choose any non-zero value for (say) x (because know that any non-
zero multiple of an eigenvector is also an eigenvector for the same
eigenvalue). We choose x = 1 and hence y = λ for each eigenvalue
λ1,2 to get

w1 = xu+ yv = u+
√
n− 1v =


√
n− 1
1
...
1


and

w2 = u−
√
n− 1v =


−
√
n− 1
1
...
1


to get the remaining eigenvectors.

2. Another way is to use a little theory of linear maps (that are the
subject of subsequent chapters). According to (1.1), we can view
multiplication by A (restricted to 2-dimensional subspace) C(A))
as a linear map that C(A) to C(A). Using (1.1) we can represent
this map in the {u,v} basis by a 2×2 matrix, which we denote by B:

B =
[

0 1
n− 1 0

]
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Theory tells us that the eigenvalues of a linear map do not depend
on the choice of basis for the underlying vector space, which means
that the eigenvectors of B must be same as the restriction of A to
C(A). The characteristic polynomial for B is

det(B−λI) = λ2 − (n− 1) = 0

which yields λ1,2 = ±
√
n− 1. The the basis of he eigenspaces N (B−

λ1,2I) (expressed with regard to the {u,v}) can be computed as
usual by Gaussian elimination.

w1 =
[

1√
n− 1

]
, w2 =

[
1

−
√
n− 1

]
Since the coordinates of these vectors represent coefficients in the {u,v}
of C(A), we can express them as

w1 = u+
√
n− 1v, w2 = u+

√
n− 1v

Solution to problem 1.5, page 4:
The simplest way to determine the remaining eigenvalues of A (apart from

the double eigenvalue 3) is to notice what happens when we add and subtract
the equations Av1 = v2 and Av2 = v1.

By adding them we get

A(v1 + v2) = v1 + v2

and by subtracting them we get

A(v1 − v2) = −(v1 − v2)

From these two equations we can directly read two eigenvectors

u1 = v1 + v2 =


1
1
1
1

 for eigenvalue λ1 = 1

and

u2 = v1 − v2 =


−1
1
1
−1

 for eigenvalue λ2 = −1

An alternative way to determine these two eigenvectors would be similar
to that in Exercise 1.4 (b): we could write a 2 × 2 matrix that represents mul-
tiplication by A on the subspace spanned by {v1,v2} and compute λ1,λ2,u1,u2
using the usual procedure.

We also notice that the computed eigenvectors u1 and u2 are orthogonal,
which is a necessary condition for A to be a symmetric matrix. If the computed
u1 and u2 were not orthogonal we could conclude that a symmetric matrix A
with the required properties does not exist.
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Now that we have all four eigenvalues λ1 = 1,λ2 = −1 (together with their
eigenvectors) and λ3,4 = 3, we only need to determine the corresponding eigenspace
for λ3,4 = 3.

The requirement thatAmust be a symmetric matrix implies that the eigenspace
N (A−3I) must be 2-dimensional and it must be orthogonal to the eigenspaces
for λ1 and λ2. This means it is enough to find a basis for the orthogonal
complement to Lin{u1,u2} which is also 2-dimensional. The condition x ∈
Lin{u1,u2}⊥ can be described by equations u1 ·x = 0 and u2 ·x = 0, i.e. a system
of equations

x1 + x2 + x3 + x4 = 0

−x1 + x2 + x3 − x4 = 0

for the coordinates x = [x1,x2,x3,x4]T.
Another way to obtain this system of equations is to define the matrix

U = [u1,u2] =


1 −1
1 1
1 1
1 −1


and note that

Lin{u1,u2}⊥ = C(U )⊥ =N (UT)

In any case, we can perform Gaussian elimination on the matrix UT to obtain

UT ∼
[
1 0 0 1
0 1 1 0

]
or on the system above to directly to obtain the conditions

x1 + x4 = 0

x2 + x3 = 0

By choosing the appropriate values for the ’free’ variables x3 and x4 we can
choose the following basis for the eigenspace N (A− 3I) =N (UT)

u3 =


0
−1
1
0

 and u4 =


−1
0
0
1


By finding all the eigenvalues and eigenvectors we effectively have a diagonal-
isation of the matrix A. It remains to define the matrices

D = diag(1,−1,3,3) and P = [u1,u2,u3,u4]

and compute A = PDP −1. If we are computing this product by hand, it may
be preferable to choose an orthonormal basis of eigenvectors (in order to avoid
computing the inverse P −1) instead of {u1,u2,u3,u4}. Luckily, all these vectors
are already orthogonal, so we only need to normalize them. We can define
therefore define an orthonormal basis of eigenvectors by

q1 =
1
2
u1,q2 =

1
2
u2,q3 =

1
√

2
u3,q4 =

1
√

2
u4,
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define the matrix Q = [q1,q2,q3,q4] and compute

A =QDQT =
1
2


3 1 1 −3
1 3 −3 1
1 −3 3 1
−3 1 1 3


Solution to problem 1.6, page 4: In principle, a Schur decomposition for a
matrix A ∈Rn×n can be computed by the following algorithm.

We first find an eigenvalue λ1 for A and a corresponding normalized eigen-
vector q1, so we have Aq1 = λ1q1 with qT

1q1 = 1. Then we find an ONB
{q2, . . . ,qn} for the orthogonal complement of q1. In other words we form a
an orthogonal matrix

Q1 =
[
q1,q2, . . . ,qn

]
meaning QT

1Q1 = I , or, equivalently, qT
i qi = 1 and qT

i qj = 0 for i , j, i, j =
1, . . . ,n. Then we compute the matrix

T1 := QT
1AQ1

=


qT

1
qT

2
...
qT
n

A
[
q1 q2 . . . qn

]

=


qT

1
qT

2
...
qT
n


[
λ1q1 Aq2 . . . Aqn

]

=


λ1qT

1q1 qT
1Aq2 . . . qT

1Aqn
λ1qT

2q1 qT
2Aq2 . . . qT

2Aqn
...

...
. . .

...
λ1qT

nq1 qT
nAq2 . . . qT

nAqn


=

[
λ1 bT

0 A2

]
where the vector b and matrix A2 are simply the results of the computation.
This basically yields the first column and first row of upper triangular matrix
T in the Schur decomposition A =QTQT.

We can then repeat the procedure on the A2 block of the matrix T1 to ob-
tain (n − 1) × (n − 1) matrices Q2 and T2 and so on. The end result is the
upper-triangular matrix from the Schur decomposition together with a se-
quenceQ1,Q2, . . . ,Qn−1 of orthognal matrices of decreasing size. The orthognal
martix Q from the Schur decomposition can then be computed by

Q =Q1

[
1 0T

0 Q2

]
· · ·

[
In−1 0T

0 Qn−1

]
It should be noted that we have considerable freedom during the computing of
the Schur decomposition using the described algorithm, from the choice of the
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’first’ eiqenvalue to the choice of ONB for the orthogonal complement of the
chosen eigenvector at each step of the algorithm. When computing by hand
it is therefore worth it to use this freedom at each step with an eye towards
keeping the subsequent computations as simple as possible.

We will find the Schur decomposition of matrix B first, since it is the easier
example. The characteristic polynomial is

det(B−λI) =

∣∣∣∣∣∣∣∣
2−λ −1 0

0 1−λ 0
−
√

2 −
√

2 2−λ

∣∣∣∣∣∣∣∣ = (2−λ)
∣∣∣∣∣2−λ 0

0 1−λ

∣∣∣∣∣ = (2−λ)2(1−λ)

We choose the ’first’ eigenvalue to be λ = 1 since we easily notice that the
corresponding eigenvector is simply q1 = [0,0,1]T. Using Gaussian elimina-
tion we could also verify that q1 is also the only eigenvector for the double
eigenvalueλ = 2 which means that B is not diagonalizable, but a Schur decom-
position still exists.

Clearly, we have many choices for the orthogonal matrix Q1 which should
contain q1 in the first column. A good choice is

Q1 =

0 1 0
0 0 1
1 0 0


We now compute

T1 = QT
1BQ1

=

0 0 1
1 0 0
0 1 0


 2 −1 0

0 1 0
−
√

2 −
√

2 2


0 1 0
0 0 1
1 0 0


=

0 0 1
1 0 0
0 1 0


0 2 −1
0 0 1
2 −

√
2 −

√
2


=

2 −
√

2 −
√

2
0 2 −1
0 0 1


The matrix multiplication in this case is easy since Q1 happens to be a per-
mutation matrix: multiplication by Q1 from the right just permutes column
vectors and multiplication from the left permutes row vectors.

We notice that the result T1 already happens to be an upper-triangular ma-
trix so no further steps are needed. The Schur decomposition of B is simply
B =Q1T1Q

T
1 .

Of course, a less fortunate choice of Q1 would require more computation.
For instance, a sensible choice for Q1 also seems to be

Q1 =

0 0 1
0 1 0
1 0 0


This choice then results in

T1 =

2 −
√

2 −
√

2
0 0 1
0 2 −1
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and the matrix

B2 =
[
0 1
2 −1

]
As before, we can notice the eigenvalue λ = 2 (we also know this must be an
eigenvalue since the matrix QT

1BQ1 has the same eigenvalues as B) with eigen-
vector q2 = [0,1]T. The (almost) only choice for Q2 is then

Q2 =
[
0 1
1 0

]
and we get

T2 =QT
2B2Q2 =

[
2 −1
0 1

]
(Q2 is a permutation matrix that just swaps the first and second columns/rows
of matrices.)

The final result is

T =
[
2 0T

0 T2

]
=

2 −
√

2 −
√

2
0 2 −1
0 0 1


for the upper-triangular matrix of the decomposition and

Q =Q1

[
1 0T

0 Q2

]
=

0 1 0
0 0 1
1 0 0


for the orthogonal matrix, which is the same result as before.

A somewhat more involved example is matrix A. The characteristic poly-
nomial is

det(A−λI) =

∣∣∣∣∣∣∣∣
6−λ −1 1

4 3−λ 1
2 2 3−λ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
6−λ −1 1
λ− 2 4−λ 0

2 2 3−λ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣λ− 2 4−λ
2 2

∣∣∣∣∣+ (3−λ)
∣∣∣∣∣6−λ −1
λ− 2 4−λ

∣∣∣∣∣
= (2(λ− 2)− 2(4−λ)) + (3−λ) ((6−λ)(4−λ) + (λ− 2))

= −4(3−λ) + (3−λ)(λ2 − 9λ+ 22)

= (3−λ)(λ2 − 9λ+ 18)

= (3−λ)2(6−λ)

Let us find an eigenvector for λ = 6. Using Gaussian elimination we get

A− 6I ∼

0 −1 1
4 −3 1
2 2 −3

 ∼
2 2 −3
0 −1 1
4 −3 1

 ∼
2 2 −3
0 −1 1
0 −7 7

 ∼
2 0 −1
0 −1 1
0 0 0
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The equations for the coordinates of an eigenvector v1 = [x1,x2,x3]T for λ = 6
therefore reduce to

2x1 − x3 = 0

−x2 + x3 = 0

If we choose x3 = 2 for the value of the ’free’ variable we get the eigenvector
v1 = [1,2,2]T. Similarly, we can find that the only eigenvectors for the eigen-
value λ = 3 are multiples of v2 = [−1,1,4]T.

However, the eigenvector v1 seems ’nicer’ than v2. For one, the length |v1| =
3 is an integer which means we don’t need to deal with square-roots when
normalizing. Also, it is possible to find two mutually orthogonal vectors to v1
simply by cleverly permuting and changing signs of its coordinates, which also
ensures they all have the same length.

After some guesswork, a sensible choice for Q1 seems to be

Q1 =
1
3

1 2 2
2 1 −2
2 −2 1


The result for T1 is

T1 =QT
1AQ1 =QT

1

2 3 5
4 3 1
4 0 1

 =

6 3 3
0 3 3
0 0 3


Since T1 happens to be an upper-triangular matrix we can terminate the algo-
rithm and write the Schur decomposition as A =Q1T1Q

T
1 .

With a little less luck with our choice for Q1, for instance if we had chosen

Q1 =
1
3

1 2 2
2 −2 1
2 1 −2


the result for T1 would be

T1 =

6 3 3
0 0 3
0 3 3


The algorithm would then require one more step. But even in this case we can
notice that T1 can be transformed into an upper-triangular matrix by the same
permutation matrix that transposes the second and third columns and rows as
in the example for the B matrix above.

Solution to problem 1.7, page 4:

1. By the definition ∥A∥F =
√

tr(ATA) and assumption UTU = I we have

∥UA∥2F = tr((UA)TUA) = tr(ATUTUA) = tr(ATA) = ∥A∥2F

2. Here, we also need a basic property of the trace operation tr(AB) = tr(BA).

∥AV ∥2F = tr((AV )TAV ) = tr(V TATV ) = tr(ATAVV T) = tr(ATA) = ∥A∥2F
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3. This can also be proved directly by definition, or simply by combining
the previous two equalities

∥UAV ∥F = ∥AV ∥F = ∥A∥F

Solution to problem 1.8, page 5:

1. Define the function f (x) := ∥Ax + B∥2F for x ∈ R. Clearly, f (x) ≥ 0 for all
x ∈ R. Expanding according to the definitions and the properties of the
inner product we have

f (x) = ∥Ax+B∥2F
= ⟨Ax+B,Ax+B⟩F
= ⟨Ax,Ax⟩F + ⟨Ax,B⟩F + ⟨B,Ax⟩F + ⟨B,B⟩F
= ⟨A,A⟩F · x2 + 2⟨A,B⟩F · x+ ⟨B,B⟩F

This shows f (x) is a quadratic function of x. A quadratic function f (x) is
non-negative for all x ∈ R if and only if its discriminant D = b2 − 4ac is
non-positive, D ≤ 0. In our case the discriminant equals

D = 4(⟨A,B⟩F)2 − 4⟨A,A⟩F⟨B,B⟩F = 4(⟨A,B⟩F)2 − 4∥A∥2F∥B∥
2
F

The conditionD ≤ 0 then gives (⟨A,B⟩F)2 ≤ ∥A∥2F∥B∥
2
F which implies |⟨A,B⟩F| ≤

∥A∥F∥B∥F.

We also mention that the Cauchy–Schwarz inequality holds not only for
the Frobenius inner product but for general inner products on a vector
spaces. The only properties of the inner product needed to prove the
Cauchy-Schwarz inequality were ⟨A,A⟩ ≥ 0, ⟨A,B⟩ = ⟨B,A⟩ and ⟨xA,B⟩ =
x⟨A,B⟩ for scalar values x.

2. In the proof we need the Cauchy–Shcwarz inequality (notice that |⟨A,B⟩F| ≤
∥A∥F∥B∥F implies ⟨A,B⟩F ≤ ∥A∥F∥B∥F) but is otherwise quite direct.

∥A+B∥2F = ⟨A+B,A+B⟩F
= ⟨A,A⟩F + 2⟨A,B⟩F + ⟨B,B⟩F
≤ ∥A∥2F + 2∥A∥F∥B∥F + ∥B∥2F
= (∥A∥F + ∥B∥F)2

Since both ∥A+B∥F and ∥A∥F + ∥B∥F are both non-negative numbers this
implies the triangle inequality.

Obviously, as is the case with the Cauchy–Schwarz inequality, the trian-
gle inequality also holds in general vector spaces with inner products.

3. First, we use the Cauchy–Schwarz inequality to obtain the following in-
equality

∥AB∥2F = ⟨AB,AB⟩F = tr((AB)TAB)

= tr(BTATAB) = tr(ATABBT)

= tr(ATA(BTB)T) = ⟨ATA,BTB⟩F
≤ ∥ATA∥F∥BTB∥F



34 CHAPTER 4. SOLUTIONS

In order to obtain ∥AB∥F ≤ ∥A∥F∥B∥F it therefore suffices to prove the in-
equality

∥ATA∥F ≤ ∥A∥2F
To see this, we need to use a few properties of the matrix B = ATA ∈Rm×m.

Clearly, B is a symmetric matrix since BT = (ATA)T = ATA = B. Also, for
all x ∈Rm we have

⟨Bx,x⟩ = ⟨ATAx,x⟩ = ⟨Ax,Ax⟩ ≥ 0

where ⟨x,y⟩ := xTy denotes the usual Euclidean inner product. In other
words, B is a non-negative definite matrix. A property of non-negative
definite matrices is that all their eigenvalues are non-negative (this is
actually an equivalent definition of a non-negative definite matrix).

Let λ1, . . . ,λm ≥ 0 denote the eigenvalues of B. On the one hand we have

∥A∥4F = tr(ATA)2 = tr(B)2 =

 m∑
i=1

λi

2

=
m∑
i=1

λ2
i +

∑
i,j

λiλj

since we know that the trace of a matrix equals the sum of its eigenvalues.

On the other hand we have

∥ATA∥2F = ∥B∥2F = tr(BTB) = tr(B2) =
m∑
i=1

λ2
i

since B is a symmetric matrix and we know that if λ is an eigenvalue for
B then λ2 is an eigenvalue for B2.

Combining the last two identities and considering that
∑
i,j λiλj ≥ 0 be-

cause all the eigenvalues are non-negative, we can write

∥ATA∥2F =
m∑
i=1

λ2
i

≤
m∑
i=1

λ2
i +

∑
i,j

λiλj

= ∥A∥4F

from which the desired inequality follows.

4. Using the properties of the Kronecker product we can verify the identity
directly.

∥A⊗B∥2F = tr((A⊗B)T(A⊗B))

= tr((AT ⊗BT)(A⊗B))

= tr(ATA⊗BTB)

= tr(ATA)tr(BTB)

= ∥A∥2F∥B∥
2
F
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Solution to problem 1.9, page 5: We simply write the orthogonality condition
⟨I,A⟩F = 0 for A ∈ I⊥ in terms of the coordinates of

A =
[
x1 x2
x3 x4

]
The equation is

⟨I,A⟩F = tr(ITA) = tr(A) = x1 + x4 = 0

This gives us three ’free’ variables x2,x3 and x4, which agrees with the fact that
R

2×2 is a four-dimensional space which implies that the orthogonal comple-
ment of any non-zero element should be three-dimensional.

By choosing the appropriate values for the free variables we define three
linearly independent solutions

A1 =
[
0 1
0 0

]
, A2 =

[
0 0
1 0

]
, A3 =

1
√

2

[
−1 0
0 1

]
It is straight-forward to verify that all the matrices I ,A1,A2,A3 are mutually
orthogonal with respect to the Frobenius product. Obviously we also have
∥A1∥F = ∥A2∥F = ∥A3∥F = 1, so these three matrices form an ONB for I⊥.

Solution to problem 1.10, page 5: The Eckart-Young theorem states that the
problem of the best rank k approximation of a rank n matrix (with regard to
the Frobenius norm) can be found using the SVD matrix decomposition.

The SVD of a matrix A ∈Rn×m is a matrix factorization A =UΣV T where

Σ =


σ1 0 . . . 0
0 σ2 . . . 0
...

. . .
...

 ∈Rn×m
is a diagonal matrix containing the so-called ’singular’ values σ1, . . . ,σmin(n,m)
along the diagonal and

U =
[
u1, . . . ,un

]
∈Rn×n and V =

[
v1, . . . ,vm

]
∈Rm×m

are orthogonal matrices. Another useful way of writing the SVD is the sum

A =
min(n,m)∑
i=1

σiuiv
T
i

Each term in this sum is a rank 1 matrix (every column in a matrix of the form
σuvT is clearly a multiple of u), these are the ’singular’ matrices that give the
’singular value decomposition’ its name. This sum also shows that the SVD is
not completely unique. For instance, reordering the sum or changing the sign
of two elements in a triple {σi ,ui ,vi} does not affect the ’singular’ matrices in
the decomposition. However, for the standard form of the SVD we require the
singular values are positive and ordered σ1 ≥ σ2 ≥ . . . ≥ 0.

Note also that the Frobenius norm of a ’singular’ matrix in the decomposi-
tion equals

∥σuvT∥2F = tr((σuvT)TσuvT) = σ2tr(vuTuvT) = σ2tr(vvT) = σ2tr(vTv) = σ2
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since the vectors u are v are normed, uTu = vTv = 1. Hence, the Frobenius
norm of any matrix A can be expressed in only in terms of its singular values as

∥A∥F =
√
σ2

1 + σ2
2 + . . .. The Eckart-Young theorem states that in order to find the

best rank k approximation to a matrix A we simply pick out the ’largest’ (with
regards to the Frobenius norm) k ’singular’ matrices in the decomposition.

In order words, we form the diagonal matrix Σk which contains only the
first k singular values (assuming σ1 ≥ σ2 ≥ . . .) along the diagonal and com-
pute M = UΣkV

T. Among all rank k matrices M will then be the matrix that
minimises the value ∥A−M∥F.

A difficulty in using the Eckart-Young theorem when dealing with matrices
without numerical computation software, is that computing the SVD for gen-
eral matrices by hand can be quite tedious. For the examples below we don’t
use any general algorithm for computing the SVD because for special cases
matrices the decomposition can often be found by simpler means.

(a) For a diagonal matrix D we basically already have the SVD D = UΣV T

with Σ =D and U = V = I . We can also explicitly write

A =

2 0 0
0 −3 0
0 0 1

 = 2 · e1e
T
1 − 3 · e2e

T
2 + 1 · e3e

T
3

The best rank 1 approximation to A contains the ’largest’ term (by abso-
lute value) in the sum

M = −3 · e2e
T
2 =

0 0 0
0 −3 0
0 0 0


Similarly, the best rank 2 approximation contains the largest 2 terms:

M = 2 · e1e
T − 3 · e2e

T
2 =

2 0 0
0 −3 0
0 0 0


Of course, the SVD with Σ = D and U = V = I is not the standard SVD
with positive and ordered singular values along the diagonal of Σ. But we
could obtain this with permutation matrices (with an additional change
of sign because of the −3) for U and V . For instance, we could also write2 0 0

0 −3 0
0 0 1

 =

 0 1 0
−1 0 0
0 0 1


3 0 0
0 2 0
0 0 1


0 1 0
1 0 0
0 0 1

 =:UΣV T

to obtain the standard SVD and then compute

M =

 0 1 0
−1 0 0
0 0 1


3 0 0
0 0 0
0 0 0


0 1 0
1 0 0
0 0 1

 =:UΣV T =

0 0 0
0 −3 0
0 0 0


which yields the same result.
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(b) Noticing that B is a symmetric, we remember that a symmetric matrix can
be diagonalised using an orthonormal basis, meaning we have a eigen-
value decomposition A = QDQT with Q being an orthogonal matrix.
Comparing such an eigenvalue decomposition with the SVD, we notice
that we can write B = UΣV T with Σ = D and U = V = Q. Depending on
the order of the eigenvalues in D we may need to permute the columns
of U and V , or even change the signs of some of the columns in U or V if
we have a negative eigenvalue, in order to obtain the standard SVD. But
as seen in the previous example, this is not essential for the use of the
Eckart-Young theorem.

To find the eigenvalue decomposition of B we first compute the charac-
teristic polynomial

det(B−λI) =
∣∣∣∣∣1−λ 3

3 1−λ

∣∣∣∣∣ = (1−λ)2 − 9 = (−2−λ)(4−λ)

In order to obtain the best rank 1 approximation we actually only need
the largest eigenvalue (by absolute value) λ = 4 along with the appropri-
ate (normalised) eigenvector. Gaussian elimination

A− 4I =
[
−3 3
3 −3

]
∼

[
1 −1
0 0

]
reduces the equations for the coordinates of the eigenvector v = [x1,x2]T

to x1 − x2 = 0. A normalised solution is

q =
1
√

2

[
1
1

]
and the best rank 1 approximation can be expressed by

M = 4 ·qqT = 4 · 1
√

2

[
1
1

]
1
√

2

[
1 1

]
=

[
2 2
2 2

]
(c) Since C is a diagonal matrix we can immediately write at least two differ-

ent best rank 1 approximations to C.

M =
[
2 0
0 0

]
or M =

[
0 0
0 2

]
because we have two equal ’largest’ singular values σ1 = σ2 = 2.

In fact, the are many more solutions, because in the case of two or more
equal singular values there are also infinitely many valid SV decomposi-
tions. Indeed, for any orthogonal matrix Q = U = V we can write a SVD
for C by

C = 2I =Q2IQT

For instance, if we choose Q to be a rotation matrix which can be written
as

Q =
[
cos(t) −sin(t)
sin(t) cos(t)

]
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for some t ∈R, we can even explicitly compute

M =Q
[
2 0
0 0

]
QT =

[
cos(t) −sin(t)
sin(t) cos(t)

][
2 0
0 0

][
cos(t) sin(t)
−sin(t) cos(t)

]
= 2

[
cos2(t) cos(t)sin(t)

cos(t)sin(t) sin2(t)

]
to get an infinite set of different best rank 1 approximations to C (which
also includes the two previously mentioned solutions by choosing t = 0
and t = π

2 ). One can also explicitly compute that we have ∥C −M∥F = 2
for any choice of t in the expression for M above.

Solution to problem 1.11, page 5: Assume we have eigenvalue/eigenvectors
pairs for A and B, Av = λv and Bu = µu. By the definition of the Kronecker
sum and properties of the Kronecker property we have

(A⊕B)(v⊗u) = (A⊗ In + Im ⊗B)(v⊗u)

= (A⊗ In)(v⊗u) + (Im ⊗B)(v⊗u)

= Av⊗ Inu+ Inv⊗Bu
= λ(v⊗u) +µ(v⊗u)

= (λ+µ)(v⊗u)

This shows the sum of eigenvalues λ+µ is an eigenvalue for A⊕B with eigen-
vector v⊗u which proves the claim.

This means it is possible to compute the eigensystem of A⊕ B without ex-
plicitly computing the Kronecker sum simply by computing the eigensystems
ofA and B separately and then computing all possible sums λ+µ of eigenvalues
together with corresponding eigenvectors v⊗u.

For A the characteristic polynomial is

det(A−λI) =
∣∣∣∣∣−1−λ 2

0 3−λ

∣∣∣∣∣ = (−1−λ)(3−λ)

An eigenvector for λ1 = −1 is v1 = [1,0]T and an eigenvector for λ2 = 3 is
v2 = [1,2]T.

For B we have

det(B−µI) =
∣∣∣∣∣1−µ 0

2 2−µ

∣∣∣∣∣ = (1−µ)(2−µ)

so the eigenvalues are µ1 = 1 and µ2 = 2 with eigenvectors u1 = [−1,2]T and
u2 = [0,1]T.

We can organize the pairs λi +µj ,vi ⊗uj into a table.

µj ,uj
∖
λi ,vi −1,

[
1
0

]
3,

[
1
2

]

1,
[
−1
2

]
0,


−1
2
0
0

 4,


−1
2
−2
4


2,

[
0
1

]
1,


0
1
0
0

 5,


0
1
0
2
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Solution to problem 1.12, page 5:

(a) Since A is a symmetric matrix, we know it can be diagonalised with an
orthogonal matrix U . The characteristic polynomial is

det(A−λI) =
∣∣∣∣∣2−λ 2

2 −1−λ

∣∣∣∣∣ = (2−λ)(−1−λ)−4 = λ2−λ−6 = (λ−3)(λ+2)

For λ1 = 3 a normalised eigenvector is u1 = 1√
5

[2,1]T and for λ2 = −2 we

have u2 = 1√
5

[−1,2]T. The matrices D and U are therefore

D =
[
3 0
0 −2

]
and U =

1
√

5

[
2 −1
1 2

]
Note that since A is a symmetric matrix this diagonalisation also gives us
the SVD which we could also write as

A = 3 ·u1u
T
1 − 2 ·u2u

T
2

(b) We can directly verify that if we have UTU = I then we also have

(U ⊗U )T(U ⊗U ) = (UT ⊗UT)(U ⊗U ) =UTU ⊗UTU = I ⊗ I

which shows this is an orthogonal matrix. Similarly, we can see that if
we have a diagonalisation A = UDUT then (U ⊗U )(D ⊗D)(U ⊗U )T is a
diagonalisation for A⊗A since

(U⊗U )(D⊗D)(U⊗U )T = (U⊗U )(D⊗D)(UT⊗UT) =UDUT⊗UDUT = A⊗A

(c) For the best rank 1 approximation of A⊗A we need the largest singular
value and corresponding singular vectors. Since A is symmetric, so is
A ⊗A, and its SVD is the same as eigenvalue decomposition which was
given in (b). We only need the largest eigenvalue of A⊗A. We know that
for matricesA and B the eigenvalues ofA⊗B are the products λiµj (where
λi and µj are the eigenvalues of A and B) and the eigenvectors are vi ⊗uj
(where vi and uj are the eigenvectors of A and B). The largest eigenvalue
of A⊗A is therefore λ1 ·λi = 9 and the corresponding eigenvector is

q1 = u1 ⊗u1 =
1
5


4
2
2
1


The best rank 1 approximation is therefore

M1 = 9 ·q1q
T
1 =

9
25


16 8 8 4
8 4 4 2
8 4 4 2
4 2 2 1


To obtain the best rank 2) approximation to A⊗A we can add the second
largest (by absolute value) singular matrix in the SVD to M1. The second
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largest singular value (eigenvalue) of A ⊗ A is λ1λ2 = λ2λ1 = −6. The
eigenspace for the eigenvalue −6 is two-dimensional, so for the eigenvec-
tor we can take

q2 = v1 ⊗ v2 =
1
5


−2
4
−1
2

 or q3 = v2 ⊗ v1 =
1
5


−2
−1
4
2


or any normalised linear combination of q2 and q3, for instance sin(t)q2+
cos(t)q3 for any choice of t ∈R. If we choose q2 we get

M2 =M1−6 ·q2q
T
2 =M2−

6
25


4 −8 2 −4
−8 16 −4 8
2 −4 1 −2
−4 8 −2 4

 =
1
5


24 24 12 12
24 −12 12 −6
12 12 6 6
12 −6 6 −3


but as in the case of Exercise 1.10 (c) we could actually construct in-
finitely many rank 2 matrices M with minimal distance ∥M −A⊗A∥F.

Solution to problem 1.13, page 6: Let us check what happens if we apply the
matrix B = A⊗A+A2 ⊗ I on the vector v⊗u where v and u are eigenvectors of
A, Av = λv and Au = µu.

B(v⊗u) = (A⊗A+A2⊗I)(v⊗u) = Av⊗Au+A2v⊗Iu = λµv⊗u+λ2v⊗u = (λµ+λ2)v⊗u

This shows that we can obtain the eigensystem for B by computing the eigen-
values λi and eigenvectors vi of A and then computing λiλj +λ2

i to obtain all
four eigenvalues of B together with their eigenvectors vi ⊗ vj , i, j = 1,2.

The characteristic polynomial of A is

det(A−λI) =
∣∣∣∣∣−1−λ 3

3 −1−λ

∣∣∣∣∣ = (1 +λ)2 − 9 = (λ+ 4)(λ− 2)

Eigenvectors for λ1 = −4 and λ2 = 2 are v1 = [−1,1]T and v2 = [1,1]T. Then
the eigenvalues for B are µ1 = λ1(λ1 + λ1) = 32, µ2 = λ1(λ2 + λ1) = 8, µ3 =
λ2(λ1 +λ2) = −4 and µ4 = λ2(λ2 +λ2) = 8 with eigenvectors

u1 = v1 ⊗ v1 =


1
−1
−1
1

 , u2 = v1 ⊗ v2 =


−1
−1
1
1

 , u3 = v2 ⊗ v1 =


−1
1
−1
1

 , u4 = v2 ⊗ v2 =


1
1
1
1


Solution to problem 1.14, page 6:

(a) To prove this, we need the identity

vec(ABC) = (CT ⊗A)vec(B)

which holds for any matrices A, B and C for which the product ABC is
defined. Applying the (linear) operator vec to the expression AX+XBwe
can write

vec(AX+XB) = vec(AXI)+vec(IXB) = (I⊗A)vec(X)+(BT⊗I)vec(X) = (BT⊕A)vec(X)

which holds by the definition of the Kronecker sum.
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(b) We can answer this question quickly by considering the eigenvalues of
the matrix BT ⊕A. Since both BT and A are upper diagonal matrices, we
can read their eigenvalues off their diagonals. The eigenvalues of Kro-
necker sum BT ⊕A are all the possible sums of the eigenvalues of BT and
A (see Exercise 1.11), i.e. 0,1,4,5. Because 0 is an eigenvalue, the matrix
BT⊕A is a singular matrix and the homogeneous system (BT⊕A)vec(X) = 0
has non-trivial solutions.

(c) Here we actually compute the Kronecker sum BT⊕A to obtain the system
matrix of our equation.

BT ⊕A = BT ⊗ I + I ⊗A =


1 0 2 0
0 1 0 2
0 0 2 0
0 0 0 2

+


−1 2 0 0
0 3 0 0
0 0 −1 2
0 0 0 3

 =


0 2 2 0
0 4 0 2
0 0 1 2
0 0 0 5


By the way, we can confirm this matrix does indeed have the eigenvalues
as claimed in (b). Gaussian elimination for the system (BT ⊕A)vec(X) =
vec(C) then yields the reduced form of the system

0 2 2 0 −2
0 4 0 2 2
0 0 1 2 1
0 0 0 5 5

 ∼


0 1 1 0 −1
0 2 0 1 1
0 0 1 2 1
0 0 0 1 1


0 1 1 0 −1
0 1 0 0 0
0 0 1 0 −1
0 0 0 1 1

 ∼


0 1 1 0 −1
0 1 0 0 0
0 0 1 0 −1
0 0 0 1 1

 ∼


0 1 0 0 0
0 0 1 0 −1
0 0 0 1 1
0 0 0 0 0


We therefore have the equations x2 = 0, x3 = −1 and x4 = 1 for the coor-
dinates of the unknown matrix

X =
[
x1 x3
x2 x4

]
with x1 being the ’free’ variable of the system. The general solution for
our equation can then be written as

X =
[
t −1
0 1

]
(with t ∈R)

Solution to problem 1.15, page 6:

(a) A square matrix A is invertible if and only if N (A) = {0}. This is true if
and only if 0 is not an eigenvalue. Since by assumption all eigenvalues of
A are not negative this holds if and only if they are all strictly positive.

(b) Let λ be an eigenvalue of A and v a corresponding eigenvector, Av =
λv. Since we are assuming the inverse A−1 exists, we can multiply this
equation from the left by A−1 to get

Av = λv ⇒ v = λA−1v ⇒ A−1v =
1
λ
v
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since we know λ , 0 from (a). This shows λ is an (non-zero) eigenvalue of
A if and only if λ−1 is an eigenvalue of A−1. Clearly then all the eigenval-
ues λ1, . . . ,λn of A are positive if and only all the eigenvalues λ−1

1 , . . . ,λ−1
n

of A−1 are positive since inverting a number does not change its sign.

(c) A PSD matrix A (i.e. a symmetric matrix with only nonnegative eigen-
values) can be diagonalised, A =QDQT, with

D =


λ1

. . .
λn


where λ1, . . . ,λn are the eigenvalues and Q is an orthogonal matrix. Let
us define the square-root of D by

√
D :=


√
λ1

. . . √
λn


and define the matrix S by S =Q

√
DQT. Then we can verify

S2 =Q
√
DQTQ

√
DQT =Q

√
D
√
DQT =QDQT = A

Since by assumption all the eigenvalues λ1, . . . ,λn of A are nonnegative,
all the eigenvalues

√
λ1, . . . ,

√
λn of S are also nonnegative, so S is also a

PSD matrix.

Solution to problem 1.16, page 7:

(a) This can be done by computing the eigenvalues and verifying that they
are nonnegative, as we will do in (b).

(b) We start by computing the characteristic polynomial

det(A−λI) =

∣∣∣∣∣∣∣∣
2−λ 3 1

3 6−λ 3
1 3 2−λ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
2−λ 3 λ− 1

3 6−λ 0
1 3 1−λ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
2−λ 3 λ− 1

3 6−λ 0
3−λ 6 0

∣∣∣∣∣∣∣∣
= (λ− 1)

∣∣∣∣∣ 3 6−λ
3−λ 6

∣∣∣∣∣
= (1−λ)(18− (3−λ)(6−λ))

= λ(λ− 1)(9−λ)
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To obtain the eigenspace for λ1 = 0 we compute

A ∼

2 3 1
3 6 3
1 3 2

 ∼
1 2 1
2 3 1
1 3 2

 ∼
1 2 1
0 −1 −1
0 1 1

 ∼
1 0 −1
0 1 1
0 0 0


We choose a normalised solution to the system, q1 = 1√

3
[1,−1,1]T, so that

we will have an orthonormal basis of eigenvectors.

For λ2 = 1 we have

A− I ∼

1 3 1
3 5 3
1 3 1

 ∼
1 3 1
0 −4 0
0 0 0

 ∼
1 0 1
0 1 0
0 0 0


We choose q2 = 1√

2
[−1,0,1]T. For λ3 = 9 we have

A− 9I ∼

−7 3 1
3 −3 3
1 3 −7

 ∼
 1 −1 1
−7 3 1
1 3 −7

 ∼
1 −1 1
0 −4 8
0 4 −8

 ∼
1 0 −1
0 1 −2
0 0 0


We choose q3 = 1√

6
[1,2,1]T.

(c) As explained in Exercise 1.15 we define
√
D = diag(0,1,3) andQ = [q1,q2,q3]

and compute
√
A = Q

√
DQT

= 1 ·q2q
T
2 + 3 ·q3q

T
3

=
1
2

 1 0 −1
0 0 0
−1 0 1

+
1
2

1 2 1
2 4 2
1 2 1


=

1 1 0
1 2 1
0 1 1


Solution to problem 1.17, page 7: Following the algorithm, we denote

a11 = 1, b =
[

2
−1

]
, B =

[
8 2
2 6

]
Then we compute

L1 =

 1 0 0
2 1 0
−1 0 1

 and A2 =
[
8 2
2 6

]
−
[

4 −2
−2 1

]
=

[
4 4
4 5

]
This completes the first step. In the next step we repeat the process for A1. We
denote

a11 = 4, b =
[
4
]
, B =

[
5
]
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and compute

L2 =
[
2 0
2 1

]
, A2 = 5− 4 = 1

The last step is to compute the square-root
√
A2 = 1 and to compute L3 = 1. To

get the final result it is actually not necessary to explicitly compute the product
in (1.2). Namely, it can be verified that the same result can be obtained simply
by nesting the first columns of the L1, L2 and L3 matrices into one matrix

L =

 1 0 0
2 2 0
−1 2 1


Solution to problem 2.1, page 9: First, recall that any n × n matrix A can be

uniquely expressed as the linear combination

A =
n∑

i,j=1

aijEij

where aij is the (i, j)-entry of a and Eij is a matrix which contains only zeros
except for the (i, j)-entry which equals 1. This shows that the set of matrices
{Eij ; i, j = 1, . . .n} forms a basis for the vector space (Rn×n,+, ·) which we will
call the standard basis. Since we have n2 basis vectors this demonstrates that
(Rn×n,+, ·) is n2 dimensional.

(a) Denote this subset by U1 and assume A,B ∈U1. Since

αA+ βB = α
n∑

i,j=1

aijEij + β
n∑

i,j=1

bijEij =
n∑

i,j=1

(αaij + βbij )Eij

the (1,2)-entry of αA+βB is α ·0 +β ·0 = 0, ie. αA+βB ∈U1. Hence, U1
is a vector subspace of Rn×n.
For the basis of U1 we simply omit E12 from the standard basis of Rn×n.
Therefore, a basis of U1 has one element less than the standard basis of
R
n×n, ie. dim(U1) = n2 − 1.

(b) For a subset of a vector space to be a vector subspace it must contain all
scalar multiples of all its elements, including 0. The simplest argument
why this subset is not a subspace is therefore because it does not contain
the 0 matrix. Another argument is that this subset is not closed for ad-
dition since adding two matrices with 1 for their (1,2) entries produces
a matrix with 2 for its (1,2) entry.

(c) This subset contains the 0 matrix and is also closed for addition since
adding matrices with integer entries results in matrices with integer en-
tries. However, this subset is not closed for scalar multiplication. For
instance multiplying any non-zero integer matrix with for instance π
will produce a matrix that does not have all integer entries.

(d) If we add two upper-triangular matrices, we get an upper-triangular
matrix. Similarly, if we multiply an upper-triangular matrix with any
scalar, the result will be an upper-triangular matrix. This subset, let us
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denote it with U4, is therefore closed for addition and scalar multiplica-
tion and is clearly a subspace. To find a basis for U4 and determine its
dimension, we notice that any matrix A ∈U4 can be written as

A =
∑
i≤j

aijEij

where the sum goes over all the pairs i, j = 1, . . . ,n with i ≤ j. So a basis
for U4 is the set {Eij : i, j = 1, . . . ,n, i ≤ j}. This set contains 1

2n(n + 1)
elements which is the dimension of U4.

(e) Adding symmetric matrices produces a symmetric matrix, multiplying
a symmetric matrix with any number also results in a symmetric matrix,
so the set of symmetric matrices is clearly a vector subspace.
More formally, denote the subset of symmetric matrices by U5 and as-
sume A,B ∈ U5, meaning AT = A and BT = B. We can then easily verify
that any linear combination of A and B is also a symmetric matrix since

(αA+ βB)T = αAT + βBT = αA+ βB

To get an explicit basis for U5 we can notice that any matrix A ∈ U5 can
be written as

A =
n∑
i=1

aiiEii +
∑
i<j

aij (Eij +Eji)

Here, we separated the diagonal elements in the first sum and off-diagonal
in the second sum. This allows us to directly identify a basis for U5 as
the set

{Eii : i = 1, . . . ,n} ∪ {Eij +Eji : i, j = 1, . . . ,n, i < j}

The number of elements in this basis and hence the dimension of U5 is
n+ 1

2n(n− 1) = 1
2n(n+ 1).

(f) Like for the case of symmetric matrices, it is easy to conclude that the
set of antisymmetric matrices is also subspace. Denote the set of anti-
symmetric matrices by U6 and assume A,B ∈U6, implying AT = −A and
BT = −B. Then

(αA+ βB)T = αAT + βBT = −(αA+ βB)

showing that any linear combination of antisymmetric matrices is an
antisymmetric matrix. To get a basis we can notice that any antisym-
metric matrix A ∈U6 can be written as

A =
∑
i<j

aij (Eij −Eji)

This sum does not include any non-zero diagonal elements since an anti-
symmetric matrix necessarily has only zeros on the diagonal. A possible
basis is therefore the set

{Eij −Eji : i, j = 1, . . . ,n, i < j}

and the dimension of U6 is 1
2n(n− 1).
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To conclude, we mention that the vector spaces bases we identified for
the case of symmetric and antisymmetric matrices together form a basis
for the entire vector space R

n×n, which also agrees with the dimensions
since 1

2n(n+ 1) + 1
2n(n− 1) = n2.

(g) The set of invertible matrices is not a vector subspace since it does not
contain the 0 matrix. It is also not closed for addition, since even if A
(and hence also −A) is an invertible matrix, the sum A+ (−A) = 0 is not
invertible.

(h) The set of matrices with zero determinant is closed for multiplication
since if det(A) = 0, then we have also

det(αA) = αndet(A) = 0

However this set is not closed for addition. A simple counterexample is[
1 0
0 0

]
+
[
0 0
0 1

]
=

[
1 0
0 1

]

(i) The set of nilpotent matrices is again closed for multiplication by scalars,
since Nn = 0 implies (αN )n = αnNn = 0. But again, this set is not closed
for addition. For instance let

A =
[
0 0
1 0

]
and B =

[
0 1
0 0

]
Then we have A2 = 0 and B2 = 0, so both are nilpotent matrices. But for
their sum

C = A+B =
[
0 1
1 0

]
we have C2 = I (and more generally Ck = C for odd k and Ck = I for
even k) so it is not a nilpotent matrix.

(j) It is useful to provide a more explicit description of the set U10 of all
nilpotent upper-triangular matrices. First, let A be a general upper-
triangular matrix with elements a1, . . . , an on the diagonal

A =


a1 ∗ . . . ∗
0 a2 . . . ∗
...

. . .
...

0 . . . 0 an


If we compute the m-th power of such a matrix, we notice we get a
matrix of the form

Am =


am1 ∗ . . . ∗
0 am2 . . . ∗
...

. . .
...

0 . . . 0 amn


This means we can have a nilpotent upper-triangular matrix only if all
the diagonal elements equal zero, a1 = . . . = an = 0.
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Conversely, if we have an upper-triangular with zeros on the diagonal

A =


0 ∗ . . . ∗
0 0 . . . ∗
...

. . .
...

0 . . . 0 0


we can quite directly see that we get An = 0 (with every multiplication
by A we see we lose an additional line of elements above the diagonal
until none are left).
In other words the set of nilpotent upper-triangular matrices is precisely
the set of strictly upper-triangular matrices, which is clearly a vector
subspace.
Thus any A ∈U10 can be written as

A =
∑
i<j

aijEij

A basis is the set
{Eij : i, j = 1, . . . ,n, i < j}

and the dimension is 1
2n(n+ 1).

(k) Assume we have two matrices A,B ∈ U11 from the set of matrices with
zero trace, tr(A) = tr(B) = 0. Then by the properties of the tr operator we
see that any linear combination also has zero trace:

tr(αA+ βB) = αtr(A) + βtr(B) = 0

Thus U11 is a vector subspace. One way of explicitly writing a general
matrix A ∈U11 is

A =
n−1∑
i=1

aiiEii − (a11 + . . .+ an−1,n−1)Enn +
∑
i,j

aijEij

=
n−1∑
i=1

aii(Eii −Enn) +
∑
i,j

aijEij

A possible basis is then the set

{Eii −Enn : i = 1, . . . ,n− 1} ∪ {Eij : i, j = 1, . . . ,n, i , j}

The dimension is n−1+n2−n = n2−1. This also agrees with the fact that
we have basically one equation tr(A) = a11 + . . . + ann = 0 for the entries
of the matrix A and n2 − 1 ’free’ variables.

Solution to problem 2.2, page 9: Description.

(a) Proof.
(b) Basis.
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Solution to problem 2.3, page 10:

(a) Recall that the axioms of a vector space (V ,+, · ) are:

(VS1) u + v = v +u in (u + v) +w = u + (v +w),

(VS2) there exists a zero vector 0 and v + 0 = 0+ v = v,

(VS3) for each v ∈ V there exists an inverse vector −v, such that v+(−v) =
(−v) + v = 0,

(VS4) 1 · v = v,

(VS5) (αβ) · v = α · (β · v),

(VS6) (α + β) · v = α · v + β · v,

(VS7) α · (u + v) = α ·u +α · v,

for all u,v,w ∈ V and α,β ∈R.
We need to verify that conditions (VS1)–(VS7) hold for (R+,⊕,⊙). Pick
arbitrary x,y,z ∈R+ and α,β ∈R. Here we go:

(VS1) x⊕ y = xy = yx = y ⊕ x, x⊕ (y ⊕ z) = x(yz) = xyz = (xy)z = (x⊕ y)⊕ z,
(VS2) for 1 ∈ R+ we have x ⊕ 1 = x · 1 = x, ie. 1 acts as the zero vector in

R
+; 0 = 1 (and this is not contradictory),

(VS3) let’s use the (ad hoc) notation ⊖x = 1/x (this is well-defined since
x , 0), then x⊕ (⊖x) = x · 1

x = 1, which is the zero vector in R
+,

(VS4) 1⊙ x = x1 = x,

(VS5) (αβ)⊙ x = xαβ = (xβ)α = α ⊙ (β ⊙ x),

(VS6) (α + β)⊙ x = xα+β = xαxβ = (α ⊙ x)⊕ (β ⊙ x),

(VS7) α ⊙ (x⊕ y) = (xy)α = xαyα = (α ⊙ x)⊕ (α ⊙ y),

hence (R+,⊕,⊙) is a vector space over R.

(b) Note that every x ∈ R+ can be written as x = elogx = (logx)⊙ e, ie. every
x ∈ R+ is some scalar multiple of e (the basis of the natural logarithm).
Hence {e} is a basis for (R+,⊕,⊙) and dim(R+) = |{e}| = 1.

Solution to problem 2.4, page 10: We need to prove that for any X,Y ∈ U and

any α,β ∈ R we have αX + βY ∈ U . So we pick arbitrary X,Y ∈ U and α,β ∈ R.
Now, X,Y ∈U means that XN =NX and YN =NY , and we have

(αX + βY )N = αXN + βYN = αNX + βNY =N (αX + βY ),

hence αX + βY ∈U and U is a vector subspace of R2×2.
To determine a basis, we need the actual matrix N . Write

A =
[
a b
c d

]
.

The equation AN =NA becomes[
a b
c d

][
0 0
1 0

]
=

[
0 0
1 0

][
a b
c d

]
∴

[
b 0
d 0

]
=

[
0 0
a b

]
∴

b = 0, 0 = 0,
d = a, 0 = b.
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Hence, a matrix A ∈U must be of the form

A =
[
a 0
c a

]
= a

[
1 0
0 1

]
+ c

[
0 0
1 0

]
= aI + cN ,

where a,c ∈ R are arbitrary. Now, I and N are linearly independent, so BU =
{I,N } is a basis for U and dimU = 2.

Solution to problem 2.5, page 10:

(a) Note that the zero polynomial is 0 = 0 · x + 0, and this is not contained
in U1, since a = 0. That means that U1 does not contain the zero poly-
nomial and U1 is not a vector subspace of R1[x].

(b) Pick p,q ∈U2 and α,β ∈R. We have

(αp+ βq)(0) = αp(0) + βq(0) = α · 0 + β · 0 = 0,

ie. αp+ βq ∈U2 and U2 is a vector subspace of R2[x].
(c) No. This subset clearly does not contain the zero polynomial.
(d) Again, pick p,q ∈U4 and α,β ∈R. Then

(αp+ βq)′′(3) = αp′′(3) + βq′′(3) = α · 0 + β · 0 = 0,

ie. αp+ βq ∈U4 and U4 is a vector subspace of Rn[x].

Solution to problem 2.7, page 11: The proof that R[x] is a vector space follows
the same argument as the proof that Rn[x] is a vector space. It is routine and
left to the reader. The (infinite) set of polynomials

B = {1,x,x2,x3, . . .}

is clearly contained in R[x]. Moreover, for any p ∈R[x] we have

p(x) = a0 + a1x+ a2x
2 + · · ·+ anxn,

ie. p is a linear combination of polynomials in B. Since the elements in B are
linearly independent (as they are polynomials of different degrees), the set B
is a basis for R[x]. Now, B has infinitely many elements, hence dimR[x] =∞.

For the subspaceW ; every polynomial p ∈W has zeroes 1 and −1, so it must
be divisible by (x − 1)(x + 1) = x2 − 1. Again, there are infinitely many linearly
independent polynomials in R[x] with this property. Namely, the set

BW = {x2 − 1,x(x2 − 1),x2(x − 1), . . .}

is a basis for W and dimW =∞.
Perhaps, we should be more precise in dealing with infinities. The ‘amount’

of elements in B is the same as the ‘amount’ of elements in the set of the natural
numbers N. Actually, the map N → B, n 7→ xn is a bijection. (Here, 0 is a
natural number.) So, in more precise notation,

dimR[x] = ℵ0 and dimW = ℵ0,

where ℵ0 = |N| is the cardinality of the set N.
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Solution to problem 2.8, page 11: Again, the proof that R[[x]] is a vector space

is routine and can be copied, practically verbatim, from the answer to the pre-
vious exercise. We, again, and conveniently, leave this to the reader.

As an example, the Taylor series for ex, namely

ex =
∞∑
k=0

xk

k!

is an element of R[[x]], which is not a polynomial, so R[[x]] is a superset of R[x].
The question of a basis for R[[x]] is actually subtler (and harder) than it may
seem at a first glance. The basis cannot be explicitly constructed as it depends
on the axiom of choice, which only (in one of its equivalent formulations) asserts
the existence of a basis. (Note that the above expression for ex is not a finite
linear combination of vectors.) Nonetheless, the dimension of R[[x]] is

dimR[[x]] = c = 2ℵ0 = |R|,

which is strictly larger than ℵ0.

Solution to problem 2.9, page 11: Pick f ,g ∈ V , ie. f ′′ + f = 0 and g ′′ + g = 0,

and α,β ∈R. Then

(αf + βg)′′ + (αf + βg) = αf ′′ + βg ′′ +αf + βg = α(f ′′ + f ) + β(g ′′ + g) = 0,

ie. αf + βg ∈ V , so V is a vector subspace of C∞(0,2π).
To determine its basis recall that the general solution to the second order

linear differential equation y′′ + y = 0 is

y(x) = C1 cosx+C2 sinx,

ie. a linear combination of functions cosx and sinx. As these two functions are
linearly independent (as the reader will verify), the set

BV = {cosx,sinx}

is a basis for V .

Solution to problem 2.10, page 11:

(a) To shorten the notation, we set A = [1 1
1 0 ], so that τ(X) = AX +XA. Then,

for any X,Y ∈R2×2 and any α,β ∈R, we have

τ(αX + βY ) = A(αX + βY ) + (αX + βY )A = αAX + βAY +αXA+ βYA

= α(AX +XA) + β(AY +YA) = ατ(X) + βτ(Y ),

ie. τ is a linear map.

(b) We need to evaluate τ at each of the basis vectors, and then express that
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evaluation as a linear combination of basis vectors. We get

τ(E11) = τ
([

1 0
0 0

])
=

[
1 1
1 0

][
1 0
0 0

]
+
[
1 0
0 0

][
1 1
1 0

]
=

[
2 1
1 0

]
= 2E11 +E12 +E21,

τ(E12) = τ
([

0 1
0 0

])
=

[
1 1
1 0

][
0 1
0 0

]
+
[
0 1
0 0

][
1 1
1 0

]
=

[
1 1
0 1

]
= E11 +E12 +E22,

τ(E21) = τ
([

0 0
1 0

])
=

[
1 1
1 0

][
0 0
1 0

]
+
[
0 0
1 0

][
1 1
1 0

]
=

[
1 0
1 1

]
= E11 +E21 +E22,

τ(E22) = τ
([

0 0
0 1

])
=

[
1 1
1 0

][
0 0
0 1

]
+
[
0 0
0 1

][
1 1
1 0

]
=

[
0 1
1 0

]
= E12 +E21,

hence, the matrix corresponding to τ with respect to the standard basis
of R2×2 is

Aτ =


2 1 1 0
1 1 0 1
1 0 1 1
0 1 1 0

 .

Solution to problem 2.13, page 12:

(a) For p,q ∈R3[x] and α,β ∈R we have

φ(αp+ βq) = (αp+ βq)(A) = αp(A) + βq(A) = αφ(p) + βφ(q),

ie. φ is linear.
For 1,x,x2,and x3 we have, with a slight abuse of notation,

φ(1) = I =
[
1 0
0 1

]
, φ(x2) = A2 =

[
5 4
4 5

]
,

φ(x) = A1 =
[
1 2
2 1

]
, φ(x3) = A3 =

[
13 14
14 13

]
,

so the matrix corresponding to φ with respect to the bases {1,x,x2,x3}
and {E11,E12,E21,E22} is

Aφ =


1 1 5 13
0 2 4 14
0 2 4 14
1 1 5 13

 .

(b) By the Cayley–Hamilton theorem, ∆A(A) = 0 (the zero matrix), ie. ∆A ∈
kerφ. Let’s evaluate ∆A(x):

∆A(x) = det(A− xI) =
∣∣∣∣∣1− x 2

2 1− x

∣∣∣∣∣ = x2 − 2x − 3.
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Of course, any multiple of ∆A(x) will also annihilate A, in fact any poly-
nomial that annihilates A is divisible by ∆A(x). One possible choice for
a basis of kerφ is

{∆A(x),x∆A(x)} = {x2 − 2x − 3,x(x2 − 2x − 3)},

which means that dim(kerφ) = 2.
(c) Note that q(x) = x∆A(x), so A is contained in that set. Moreover, q(B) = 0

for the matrix

B =
[
3 0
0 0

]
.

It can be directly checked that q(A + B) , 0, which means that the set
in question is not a vector subspace of R

2×2. (How did we guess B?
Note that q(x) = x(x + 1)(x − 3), so any 2 × 2 matrix with two different
eigenvalues picked from {−1,0,3} will be annihilated by q.)

Solution to problem 2.12, page 12:

(a) This is direct. Assume αa+ βb+γc = 0, ie.

αa+ βb+γc = [a,b,c]

αβ
γ

 =

1 1 0
1 0 1
0 1 1


αβ
γ

 =

00
0

 .

A quick Gaussian elimination on the matrix [a,b,c] helps us show that
[α,β,γ]T = [0,0,0]T is the unique solution to this system, hence a, b, and
c are linearly independent. Since we have three linearly independent
vectors in a vector space of dimension 3, they must constitute a basis of
that vector space.

(b) This is also direct. Since we are already given τ on these three basis
vectors, we simply read off the coefficients:

Aτ,B,B =

1 1 1
0 1 0
0 0 1

 .

(c) While we could also do this directly (and a bit tediously), we rather start
with a diagram:

(R3,B) (R3,B)

(R3,S) (R3,S)

τ

Aτ,B,B

τ

Aτ,S ,S

id Aid,S ,B id Aid,B,S

The nodes on this diagram represent vector spaces along with their as-
sumed bases, while the arrows represent linear maps and the corre-
sponding matrices with respect to the assumed bases. Note that K :=
Aid,B,S = [a,b,c], and Aid,S ,B = K−1. Hence, since τ = id ◦ τ ◦ id (the τ on
the left hand side is the bottom τ in our diagram), we have

Aτ,S ,S = Aid,B,S ·Aτ,B,B ·Aτ,S ,S or Aτ,S ,S = KAτ,B,BK
−1.
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After evaluating K−1, and multiplying that triple product, we get

Aτ,S ,S =

1 0 1
0 1 1
0 0 1

 .

(d) The vector [1,1,1]T is given in the standard basis, we could (with exces-
sive use of ornaments) write11

1

 = i+ j+k =

11
1


S

.

Therefore τ

11
1




S

= Aτ,S ,S

11
1


S

=

22
1


S

=

22
1

 .

We could also have used the matrix corresponding to τ with respect the
basis B. Note that 11

1


S

=
1
2

(a+b+ c) =


1
2
1
2
1
2


B

.

Hence, τ

11
1




B

= Aτ,B,B


1
2
1
2
1
2


B

=


3
2
1
2
1
2


B

.

That last column represents 3
2a + 1

2b + 1
2c, which is exactly [2,2,1]T (in

the standard basis).

Solution to problem 2.13, page 12:

(a) Pick arbitrary p,q ∈R3[x] and α,β ∈R. Then

φ(αp+ βq) =

(αp+ βq)(−1)
(αp+ βq)(0)
(αp+ βq)(1)

 =

αp(−1) + βq(−1)
αp(0) + βq(0)
αp(1) + βq(1)


= α

p(−1)
p(0)
p(1)

+ β

q(−1)
q(0)
q(1)

 = αφ(p) + βφ(q),

ie. φ is linear.
(b) For any p ∈ kerφ, by definition, φ(p) = 0 must hold. In our case that

means that

φ(p) =

p(−1)
p(0)
p(1)

 =

00
0

 ,

or p(−1) = 0, p(0) = 0, p(1) = 0, ie. −1, 0, and 1 are zeroes of an at most
degree 3 polynomial p. One choice for p is p(x) = (x+ 1)x(x−1) = x3 − x.
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Any other polynomial contained in kerφ must be a scalar multiple of
that p, since there are no higher degree polynomials in R3[x]. Hence,
Bkerφ = {x3 − x} is one possible basis for kerφ.

Solution to problem 2.14, page 12: Linearity of ψ essentially follows from the

linearity of derivation, scalar multiplication, and addition. We have

ψ(αp+ βq)(x) = (x(αp+ βq)(x+ 1))′ − 2(αp+ βq)(x)

= (αxp(x+ 1) + βxq(x+ 1))′ − 2αp(x)− 2βq(x)

= α(xp(x+ 1))′ + β(xq(x+ 1))′ − 2αp(x)− 2βq(x)

= α ((xp(x+ 1))′ − 2p(x)) + β ((xq(x+ 1))′ − 2q(x))

= αψ(p)(x) + βψ(q)(x)

for any p,q ∈R2[x] and any α,β ∈R, ie. ψ is linear.
To determine the matrix corresponding to ψ we evaluate ψ on 1, x, and x2.

With slight abuse of notation, we get

ψ(1)(x) = (x · 1)′ − 2 · 1 = 1− 2 = −1,

ψ(x)(x) = (x · (x+ 1))′ − 2 · x = (x2 + x)′ − 2x = 2x+ 1− 2z = 1,

ψ(x2)(x) = (x · (x+ 1)2)′ − 2 · x2 = (x3 + 2x2 + x)′ − 2x2 = x2 + 4x+ 1.

So, with respect to the basis {1,x,x2}, the matrix corresponding to ψ is

Aψ =

−1 1 1
0 0 4
0 0 1

 ,

Finally, determination of kerψ and imψ might be easier by means ofN (Aψ)
andC(Aψ) in this particular case. Note thatAψ is a rank 2 matrix, with columns
2 and 3 linearly independent. Those two columns express polynomials 1 and
1+4x+x2 with respect to the standard basis. (Namely, ψ(x) and ψ(x2).) Hence,

Bimψ = {1,x2 + 4x+ 1}

is a basis for imψ and imφ is determined. A quick Gaussian elimination on
Aψ gives

Aψ→

1 −1 0
0 0 1
0 0 0

 .

ie. columns of the form [x2,x2,0]T are contained in N (Aψ), or [1,1,0]T is a
choice for the sole basis vector of N (Aψ). That means that

Bkerψ = {x+ 1}

is a basis for kerψ.

Solution to problem 2.15, page 12:
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(a) This is direct:

φ(αx+ βy) = (αx+ βy)aT = αxaT + βyaT

= αφ(x) + βφ(y).

This holds for any x,y ∈R2 and any α,β ∈R, ie. φ is linear.

(b) The standard bases of R2 and R
2×2 are

{
[1

0 ], [0
1 ]

}
and {E11,E12,E21,E22},

respectively. We have

φ

([
1
0

])
=

[
1
0

][
1 1

]
=

[
1 1
0 0

]
= E11 +E12,

φ

([
0
1

])
=

[
0
1

][
1 1

]
=

[
0 0
1 1

]
= E21 +E22,

so the matrix corresponding to φ is

Aφ =


1 0
1 0
0 1
0 1

 .

(c) Note that Aφ is of rank 2, hence dim(imφ) = dim(C(Aφ)) = 2, and, since

dim(kerφ) + dim(imφ) = dim(R2) = 2,

we must have dim(kerφ) = 0 .
(d) The two (linearly independent) columns of Aφ represent matrices[

1 1
0 0

]
, and

[
0 0
1 1

]
,

which, of course, constitute a basis for imφ.

Solution to problem 2.16, page 13:

(a) Pick z1, z2 ∈U +V . By the definition of U +V , we can write z1 and z2 as
z1 = u1+v1 and z2 = u2+v2 for some u1,u2 ∈U and v1,v2 ∈ V . Therefore,
for scalars α1,α2 ∈R,

α1z1 +α2z2 = α1(u1 + v1) +α2(u2 + v2) = (α1u1 +α2u2) + (α1v1 +α2v2),

which is an element of U +V , since U and V are vector subspaces of W .
Hence, U +V is a vector subspace of W .
The proof that U ∩V is also a vector subspace is left to the reader.

(b) For (u,v), (u′ ,v′) ∈U ×V and α ∈R define

(u,v) + (u′ ,v′) := (u +u′ ,v + v′),

and α · (u,v) := (αu,αv).

(Note that the operations on the right side are the vector space opera-
tions inU and V , while the operations on the left side are newly defined
operations.)
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The routine verification that U × V is a vector space with these opera-
tions is conveniently left to the reader.
Pick bases {u1,u2, . . . ,um} and {v1,v2, . . . ,vn} of U and V , respectively. As
the reader will verify, the set

{(u1,0), (u2,0), . . . , (um,0), (0,v1), (0,v2), . . . , (0,vn)}

is a basis of U ×V . Hence, dim(U ×V ) = dim(U ) + dim(V ).
(c) Let’s pick (u1,v1), (u2,v2) ∈U ×V and α1,α2 ∈R. We have

φ(α1(u1,v1) +α2(u2,v2)) = φ(α1u1 +α2u2,α1v1 +α2v2)

= (α1u1 +α2u2)− (α1v1 +α2v2)

= α1(u1 − v1) +α2(u2 − v2)

= α1φ(u1,v1) +α2φ(u2,v2),

ie. φ is linear.
To determine ker(φ) we solve φ(u,v) = 0 or u − v = 0, which means
u = v. Note that, since u ∈ U and v ∈ V , this also implies u = v ∈ U ∩V .
Therefore

ker(φ) = {(z,z) : z ∈U ∩V }.
The image of φ consists of vectors φ(u,v) = u − v for u ∈ U and v ∈ V .
We can rewrite this as φ(u,−v) = u + v, ie. im(φ) =U +V .

(d) Linearity of ψ is obvious. Since ψ(x) = (0,0) implies x = 0, ψ is injective.
Surjectivity of ψ is clear from the description of kerφ above.

(e) We have

dim(U +V ) + dim(U ∩V ) = dim(imφ) + dim(kerφ) = dim(U ×V )

= dim(U ) + dim(V ).

Solution to problem 3.1, page 15: The Jacobian matrix is

JF =
[
cosϕ −r sinϕ
sinϕ r cosϕ

]
and the Jacobi determinant is

det(JF) =
∣∣∣∣∣cosϕ −r sinϕ
sinϕ r cosϕ

∣∣∣∣∣ = r cos2ϕ + r sin2ϕ = r

Solution to problem 3.2, page 15: The Jacobian matrix is

JF =

cosϕ −r sinϕ 0
sinϕ r cosϕ 0

0 0 1


The Jacobian determinant is the same as for the case of polar coordinates

det(JF) =

∣∣∣∣∣∣∣∣
cosϕ −r sinϕ 0
sinϕ r cosϕ 0

0 0 1

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣cosϕ −r sinϕ
sinϕ r cosϕ

∣∣∣∣∣ = r
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Solution to problem 3.3, page 15: The Jacobian matrix is

JF =

cosθ cosϕ −r cosθ sinϕ −r sinθ cosϕ
cosθ sinϕ r cosθ cosϕ −r sinθ sinϕ

sinθ r cosθ 0


Computation of the Jacobian determinant requires a little more work than for
polar and cylindrical coordinates.

det(JF) =

∣∣∣∣∣∣∣∣
cosθ cosϕ −r cosθ sinϕ −r sinθ cosϕ
cosθ sinϕ r cosθ cosϕ −r sinθ sinϕ

sinθ 0 r cosθ

∣∣∣∣∣∣∣∣
= r2

∣∣∣∣∣∣∣∣
cosθ cosϕ −cosθ sinϕ −sinθ cosϕ
cosθ sinϕ cosθ cosϕ −sinθ sinϕ

sinθ 0 cosθ

∣∣∣∣∣∣∣∣
= r2

(
sinθ

∣∣∣∣∣−cosθ sinφ −sinθ cosϕ
cosθ cosφ −sinθ sinϕ

∣∣∣∣∣+ cosθ
∣∣∣∣∣cosθ cosϕ −cosθ sinφ
cosθ sinϕ cosθ cosφ

∣∣∣∣∣)
= r2

(
sin2θ cosθ

∣∣∣∣∣−sinϕ −cosφ
cosϕ −sinφ

∣∣∣∣∣+ cos3θ

∣∣∣∣∣cosϕ −sinφ
sinϕ cosφ

∣∣∣∣∣)
= r2 cosθ

(
sin2θ(sin2ϕ + cos2ϕ) + cos2θ(cos2ϕ + sin2ϕ

)
= r2 cosθ(sin2θ + cos2θ)

= r2 cosθ

Solution to problem 3.5, page 16:

(a) With a rectangular domain of integration, this one can be directly eval-
uated"
[0,1]×[0,1]

(5− x − y)dxdy =
∫ 1

0

(∫ 1

0
(5− x − y)dx

)
dy =

∫ 1

0

(
5x − x

2

2
− xy

) ∣∣∣∣∣x=1

x=0
dy

=
∫ 1

0

(9
2
− y

)
dy =

(
9y
2
−
y2

2

) ∣∣∣∣∣y=1

y=0
= 4.

(b) From x2 + y2 = 2 we get y = ±
√

2− x2 and, since y ≥ x ≥ 0, only the so-
lution y =

√
2− x2 is relevant. We’ll integrate along y first. Our integral

becomes"
D

y

x+ 1
dxdy =

∫ 1

0

∫
√

2−x2

x

y

x+ 1
dy

dx =
∫ 1

0

y2

2(x+ 1)

∣∣∣∣∣y=
√

2−x2

y=x
dx

=
∫ 1

0

2− x2 − x2

2(x+ 1)
dx =

∫ 1

0

(1 + x)(1− x)
1 + x

dx

=
∫ 1

0
(1− x)dx =

1
2

.
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(c) Let’s try directly as the boundaries are given, ie. along y first (with
0 ≤ y ≤ x) and then along x (with 0 ≤ x ≤ π). We have"

D

sinx
x

dxdy =
∫ π

0

(∫ x

0

sinx
x

dy

)
dx =

∫ π

0

sinx
x
· y

∣∣∣∣y=x

y=0
dx

=
∫ π

0

sinx
x
· xdx =

∫ π

0
sinxdx = 2.

(d) Since our domain of integration is whole R
2, the boundaries for x and y

are ±∞. We have"
R

2
e−x

2−y2
dxdy =

∫ ∞
−∞

(∫ ∞
−∞
e−x

2
e−y

2
dx

)
dy =

∫ ∞
−∞
e−y

2
(∫ ∞
−∞
e−x

2
dx

)
dy

=
(∫ ∞
−∞
e−x

2
dx

)(∫ ∞
−∞
e−y

2
dy

)
=

(∫ ∞
−∞
e−x

2
dx

)2

.

So, denoting K =
!
R

2 e
−x2−y2

dxdy and L =
∫∞
−∞ e

−x2
dx, we have K = L2.

We’ll evaluate K using polar coordinates

x = r cosϕ , y = r sinϕ , det(JF) = r.

The boundaries for r and ϕ are 0 ≤ r <∞ and 0 ≤ ϕ ≤ 2π. We obtain

K =
∫ ∞

0

(∫ 2π

0
e−r

2 cos2ϕ−r2 sin2ϕ · r dϕ
)
dr =

∫ ∞
0

(∫ 2π

0
re−r

2
dϕ

)
dr

= 2π
∫ ∞

0
re−r

2
dr = 2π

∫ ∞
0

e−t

2
dt = π,

where we substituted a new variable t = r2 into the (single) integral in
the second line.
Finally,

L =
∫ ∞
−∞
e−x

2
dx =

√
K =
√
π.

Solution to problem 3.7, page 16: Let’s determine the domain of integration:
The projection of the intersection of the paraboloid z = 8−x2−y2 and the plane
z = −1 onto the xy-plane is the curve given by

8− x2 − y2 = −1 ∴ x2 + y2 = 9,

ie. a circle of radius 3 centered at the origin. The domain of integration, call
it D, is a closed disk bounded by that circle. We can express the volume of the
solid as a double integral in polar coordinates x = r cosϕ, y = r sinϕ, det(JF) = r:"

D

(
8− x2 − y2 − (−1)

)
dxdy =

∫ 3

0

(∫ 2π

0
(9− r2)r dϕ

)
dr = 2π

∫ 3

0
(9r − r3)dr

= 2π
(

9r2

2
− r

4

4

) ∣∣∣∣∣r=3

r=0
=

81π
2

.
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Solution to problem 3.8, page 16: Polar coordinates are an ideal choice for

this problem. The boundaries for r and ϕ for that quarter of a disk D in polar
coordinates are 0 ≤ r ≤ R and 0 ≤ ϕ ≤ π

2 . Moreover,

ρ(x,y) =
√
x2 + y2 =

√
r2 cos2ϕ + r2 sin2ϕ = r.

Hence, the integral for the mass of D is

m =
"

D

√
x2 + y2 dxdy =

∫ R

0

∫ π
2

0
r · r dϕ

dr =
π
2

∫ R

0
r2 dr

=
πr3

6

∣∣∣∣∣r=R
r=0

=
πR3

6
.

The coordinates of the center of mass are

x∗ =
1
m

"
D
x
√
x2 + y2 dxdy =

6
πR3

∫ R

0

∫ π
2

0
r2 cosϕ · r dϕ

dr
=

6
πR3

(∫ R

0
r3 dr

)∫ π
2

0
cosϕdϕ

 =
6
πR3 ·

R4

4
· 1 =

3R
2π

,

and

y∗ =
1
m

"
D
y
√
x2 + y2 dxdy =

6
πR3

∫ R

0

∫ π
2

0
r2 sinϕ · r dϕ

dr
=

6
πR3

(∫ R

0
r3 dr

)∫ π
2

0
sinϕdϕ

 =
6
πR3 ·

R4

4
· 1 =

3R
2π

.

Solution to problem 3.9, page 17: The surface z2 = x2 + y2 is an infinite cone

with (double) apex at the origin, while the surface x2 + y2 + z2 = 4 is a sphere
of radius 2 centered at the origin. Since z ≥ 0, our domain of integration D
is the ‘top’ conical cutout from the ball of radius 2 centered at the origin. In
spherical coordinates, that domain is given by boundaries

0 ≤ r ≤ 2 , 0 ≤ ϕ ≤ 2π ,
π
4
≤ θ ≤ π

2
.

Hence,

m =
$

D
ρ(x,y,z)dxdydz =

∫ 2

0

∫ 2π

0

∫ π
2

π
4

r2 cosθdθ

dϕdr
=

(∫ 2

0
r2 dr

)(∫ 2π

0
dϕ

)∫ π
2

π
4

cosθdθ

 =
(
r3

3

∣∣∣∣∣r=2

r=0

)
· 2π · sinθ

∣∣∣∣∣θ= π
2

θ= π
4

=
8
3
· 2π ·

(
1−
√

2
2

)
=

8π(2−
√

2)
3

.
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Judging from the symmetry of our domain (and the fact that ρ is constant), we
deduce that x∗ = 0 and y∗ = 0. (Still, the reader is invited to confirm that by
evaluating corresponding integrals.) For z∗ we have

z∗ =
1
m

$
D
zρ(x,y,z)dxdydz

=
3

8π(2−
√

2)

∫ 2

0

∫ 2π

0

∫ π
2

π
4

r sinθ · r2 cosθdθ

dϕdr
=

3

8π(2−
√

2)

(∫ 2

0
r3 dr

)(∫ 2π

0
dϕ

)∫ π
2

π
4

sinθ cosθdθ


=

3

8π(2−
√

2)
· 2

4

4
· 2π · 1

4
=

3(2 +
√

2)
8

,

since ∫ π
2

π
4

sinθ cosθdθ =
1
2

∫ π
2

π
4

sin(2θ)dθ =
−cos(2θ)

4

∣∣∣∣∣θ= π
2

θ= π
4

=
1 + 0

4
=

1
4

.

Solution to problem 3.10, page 17: We can rewrite the inequality x2 +y2 +z2 ≤
2z of our domain D as

x2 + y2 + z2 − 2z+ 1 ≤ 1 ∴ x2 + y2 + (z − 1)2 ≤ 1,

ie. our domain of integration is a ball of radius 1 centered at (0,0,1). If we
‘plug spherical coordinates’ into the inequality x2 + y2 + z2 ≤ 2z, we obtain

r2 ≤ 2r sinθ,

and, since r ≥ 0,

r ≤ 2sinθ,

which gives us integration boundaries for r.

Let’s start with the mass of this ball. Since ρ(x,y,z) =
√
x2 + y2 + z2 = r, we

have

m =
$

D

√
x2 + y2 + z2 dxdydz =

∫ 2π

0

∫ π
2

0

(∫ 2sinθ

0
r · r2 cosθdr

)
dθ

dϕ
=

(∫ 2π

0
dϕ

)∫ π
2

0
cosθ · r

4

4

∣∣∣∣∣r=2sinθ

r=0
dθ

 = 2π
∫ π

2

0
4cosθ sin4θdθ

= 8π
∫ 1

0
t4 dt =

8π
5

,

where a new variable t = sinθ was introduced in the last line.
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Now the coordinates of the center of mass; let’s start with

z∗ =
1
m

$
D
z
√
x2 + y2 + z2 dxdydz =

5
8π

∫ 2π

0

∫ π
2

0

(∫ 2sinθ

0
r sinθ · r · r2 cosθdr

)
dθ

dϕ
=

5
8π
· 2π

∫ π
2

0
sinθ cosθ

r5

5

∣∣∣∣∣r=2sinθ

r=0
dθ = 8

∫ π
2

0
cosθ sin6θdθ

= 8
∫ 1

0
t6 dt =

8
7

.

Note that x∗ = 0 and y∗ = 0, since
∫ 2π

0 cosϕdϕ = 0 and
∫ 2π

0 sinϕdϕ = 0. (The
reader is invited to work out the details.)

Solution to problem 3.11, page 17: From y2 − 2 ≤ 2− x2 we get x2 + y2 ≤ 4, ie.

the projection of this solid onto the xy-plane is a disk of radius 2 centered at
the origin.

The volume is

V =
$

D
dxdydz =

∫ 2

0

∫ 2π

0

∫ 2−r2 cos2ϕ

r2 sin2ϕ−2
dz

dϕdr
=

∫ 2

0

(∫ 2π

0
(4− r2)dϕ

)
dr = 2π

(
4r − r

3

3

) ∣∣∣∣∣r=2

r=0
=

32π
3

.

For the mass, we get

m =
$

D
y2 dxdydz =

∫ 2

0

∫ 2π

0

∫ 2−r2 cos2ϕ

r2 sin2ϕ−2
r2 sin2ϕdz

dϕdr
=

∫ 2

0

(∫ 2π

0
(4− r2)r2 sin2ϕdϕ

)
dr =

(∫ 2π

0
sin2ϕdϕ

)(∫ 2

0
(4r2 − r4)dr

)
=

1
2
· 2π ·

(
4r3

3
− r

5

5

) ∣∣∣∣∣r=2

r=0
=

64π
15

.

Solution to problem 3.12, page 17:

(a) Let’s start with the evaluation of the gradient of f ; grad(f ) =
[
∂f
∂x ,

∂f
∂y

]T
,

or the two partial derivatives:

∂f

∂x
= 3x2 − 8x+ 2y ,

∂f

∂y
= 2x − 2y.

Stationary points of f are solutions of grad(f ) = 0, ie.

∂f

∂x
= 0 ∴ 3x2 − 8x+ 2y = 0,

∂f

∂y
= 0 ∴ 2x − 2y = 0.
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We get y = x from the second equation and, plugging this into the first
equation, we get

3x2 − 6x = 0 ∴ 3x(x − 2) = 0,

ie. x1 = 0, x2 = 2, so the stationary points of f are T1(0,0) and T2(2,2).
We’ll use the Hesse matrix of f to determine the type of these stationary
points:

Hf (x,y) = Jgrad(f )(x,y) =


∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

 =
[
6x − 8 2

2 −2

]
.

In particular, at the stationary points T1 and T2, we have

H1 :=Hf (0,0) =
[
−8 2
2 −2

]
and H2 :=Hf (2,2) =

[
4 2
2 −2

]
.

Now, det(H1) = 12 and, since the (1,1)-entry of H1 is −8 < 0, the matrix
H1 is negative definite by the Sylvester’s criterion. Hence, T1 is a local
maximum. For H2, we have det(H2) = −12, so the two (real) eigenvalues
of H2 are of opposite signs, H2 is indefinite, and T2 is a saddle point (ie.
not a local extremum).

(b) Let’s find stationary points first:

∂g

∂x
= (x+ 1)ex = 0,

∂g

∂y
= 2(y + 1)ey = 0.

This system is particularly simple, and (x1, y1) = (−1,−1) is the only so-
lution. So T1(−1,−1) is the stationary point of g.
The Hesse matrix of g is

Hg (x,y) =
[
(x+ 2)ex 0

0 2(y + 2)ey

]
,

which, evaluated at the stationary point T1, is

H1 :=Hg (−1,−1) =
[

1
e 0
0 2

e

]
.

Now, this is a diagonal matrix with positive diagonal entries, ie. all
eigenvalues of H1 are positive and T1 is a local minimum.

(c) Again, we start with the stationary points:

∂h
∂x

= −(1 + ey)sinx = 0,

∂h
∂y

= ey(cosx − y − 1) = 0.

First equation forces sinx = 0, ie. xk = kπ for k ∈ Z. Plugging this
into the second equation we get cos(xk) − y − 1 = (−1)k − y − 1 = 0 or
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yk = (−1)k − 1. (That is, yk = 0 for k even and yk = −2 for k odd.) There
are infinitely many stationary points Tk(kπ, (−1)k−1), one for each k ∈Z.
Now, the Hesse matrix of h is

Hh(x,y) =
[
−(1 + ey)cosx −ey sinx
−ey sinx ey(cosx − y − 2)

]
,

which, at stationary points Tk evaluates to

Hk :=Hh(kπ,0) =
[
−2 0
0 −1

]
for k even,

and Hk :=Hh(kπ,−2) =
[
1 + 2

e 0
0 −1

e

]
for k odd.

Hence, for k even Hk is negative definite (since all its eigenvalues are
negative), and Tk is a local maximum for k even. For k oddHk is indefinite
(since it has positive and negative eigenvalues), so Tk is a saddle point for
k odd.

(d) Again, we start with the stationary points:

∂k
∂x

= 3x2 − 3yz = 0,

∂k
∂y

= 3y2 − 3xz = 0,

∂k
∂y

= 6z − 3xy = 0.

Third equation implies z = xy
2 . We plug this into first two equations to

get

3x2 − 3y ·
xy

2
= 0 ∴ 3x

(
x −

y2

2

)
= 0,

3y2 − 3x ·
xy

2
= 0 ∴ 3y

(
y − x

2

2

)
= 0.

From the first one of these two equations we conclude that either x = 0

or x = y2

2 . In case x = 0, we get y = 0 from the second equation, and,
since z = xy

2 , z = 0. We have the first stationary point T1(0,0,0). In case

x = y2

2 we have

3y
(
y −

y4

8

)
= 0 ∴ 3y2

(
1−

y3

8

)
= 0.

Since we already covered the case y = 0, the only remaining option is
y = 2, and therefore x = 2 and x = 2. The second stationary point of k is
T2(2,2,2).
Now, the Hesse matrix is

Hk(x,y,z) =

 6x −3z −3y
−3z 6y −3x
−3y −3x 6

 .
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Evaluating at stationary points T1(0,0,0) and T2(2,2,2) we have

H1 :=Hk(0,0,0) =

0 0 0
0 0 0
0 0 6

 and H2 :=Hk(2,2,2) =

12 −6 −6
−6 12 −6
−6 −6 6

 .

The matrixH1 is semidefinite (but not definite), hence the type of station-
ary point T1 cannot be determined from second derivatives alone. (And
we’ll leave T1 as is—of undetermined type.) We’ll use Sylvester’s crite-
rion to determine the definiteness (or lack of it) for H2. We have

12 > 0 ,
∣∣∣∣∣12 −6
−6 12

∣∣∣∣∣ = 108 > 0 , det(H2) = −648 < 0,

ie. H2 is indefinite and T2 is a saddle point.

(e) Note that the function r is not sensitive to a permutation of variables,
so all three partial derivatives can be obtained from ∂r

∂x with a suitable
permutation of variables.
Let’s start with the stationary points:

∂r
∂x

= 2x − 2yz = 0,

∂r
∂y

= 2y − 2xz = 0,

∂r
∂x

= 2z − 2xy = 0.

From the third equation, we have z = xy, therefore the first two equa-
tions become

x − y · xy = x(1− y2) = 0,

y − x · xy = y(1− x2) = 0.

From the first equation we have that either x = 0 or 1 − y2 = 0. In case
x = 0, we have z = 0 and also y = 0 from the second original equation.
The first stationary point is T1(0,0,0). In case y = ±1 we get ±1 ·(1−x2) =
0, so x = ±1. (N.b.: We have the two possibilities x = ±1 for each of
the possibilities y = ±1.) Since z = xy, we get four additional stationary
points

T2(−1,−1,1) , T3(−1,1,−1) , T4(1,−1,−1) , and T5(1,1,1).

The Hesse matrix is

Hr (x,y,z) =

 2 −2z −2y
−2z 2 −2x
−2y −2x 2

 .

Evaluating this at stationary points T1, . . . ,T5 and denoting these matri-
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ces by H1, . . . ,H5 we obtain

H1 =

2 0 0
0 2 0
0 0 2

 , H2 =

 2 −2 2
−2 2 2
2 2 2

 , H3 =

 2 2 −2
2 2 2
−2 2 2

 ,

H4 =

2 2 2
2 2 −2
2 −2 2

 , H5 =

 2 −2 −2
−2 2 −2
−2 −2 2

 .

Now, H1 is clearly positive definite, so T1 is a local minimum. Note that
H2, . . . ,H5 are indefinite by the Sylvester’s criterion, ie. they all have
the (1,1)-entry positive, while det(H2) = · · · = det(H5) = −32. (In fact,
the matrices H2, . . . ,H5 all have eigenvalues −2,4,4.) Hence, T2, . . .T5 are
saddle points.

(f) Stationary points:

∂u
∂x

= 3x2 − 3y = 0,

∂u
∂y

= 3y2 − 3x = 0.

So, from the first equation, y = x2, hence x4 − x = x(x3 − 1) = 0 from
the second equation. This gives us x1 = 0 and x2 = 1, hence y1 = 0 and
y2 = 1. We have two stationary points, T1(0,0) and T2(1,1).
The Hesse matrix is

Hu(x,y) =
[
6x −3
−3 6y

]
,

and, evaluating at stationary points we get

H1 :=Hu(0,0) =
[

0 −3
−3 0

]
and H2 :=Hu(1,1) =

[
6 −3
−3 6

]
.

A quick application of Sylvester’s criterion reveals that H1 is indefinite,
while H2 is positive definite. Therefore, T1 is a saddle point, and T2 is a
local minimum.

(g) Stationary points:

∂v
∂x

= 6xy − 6x = 0,

∂v
∂y

= 3x2 + 3y2 − 6y = 0.

First equation is equivalent to 6x(y − 1) = 0 so we have either x = 0 or
y = 1.

• Plugging x = 0 into the second equation we get 3y2 − 6y = 0, hence
y = 0 or y = 2.

• Plugging y = 1 into the second equation we get 3x2 − 3 = 0, hence
x = −1 or x = 1.
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All in all, we have four stationary points: T1(0,0), T2(0,2), T3(−1,1), and
T4(1,1).
The Hesse matrix of v is

Hv(x,y) =
[
6y − 6 6x

6x −6

]
,

which, evaluated at T1, . . . ,T4 and denoted by H1, . . . ,H4 become

H1 =
[
−6 0
0 −6

]
, H2 =

[
6 0
0 −6

]
, H3 =

[
0 −6
−6 −6

]
, and H4 =

[
0 6
6 −6

]
.

Now, H1 is clearly negative definite, so T1 is a local maximum. The ma-
trices H2,H3,H4 are negative definite, so T2,T3,T4 are saddle points.

Solution to problem 3.13, page 17: Given a,b ∈Rn let f (x) = (xTa)(xTb).

(a) The formula for f (x) can be rewritten as

f (x) = (xTa)(bTx) = xT(abT)x.

Therefore, from the formula ∂(xTAx)
∂x = xT(A+AT), we get

∂f

∂x
= xT(abT +baT),

and, from the formula ∂Ax
∂x = A, we also get

∂2f

∂x2 =
∂
∂x

(
∂f

∂x

)T
= (abT +baT).

(b) The stationary point of f is 0, ie. the only solution of ∂f
∂x (x) = 0. Since a

and b are orthogonal, ie. aTb = bTa = 0, we have

(abT +baT)a = ∥a∥2b,

(abT +baT)b = ∥b∥2a.

Let U be the vector subspace of Rn spanned by a and b. Restricted to U
with the vector space basis {a,b} the Hesse matrix of f is represented by[

0 ∥a∥2
∥b∥2 0

]
,

which has eigenvalues λ1,2 = ±∥a∥∥b∥. Hence, ∂
2f
∂x2 is indefinite, since it

has a positive and a negative eigenvalue, so 0 is a saddle point.

Solution to problem 3.14, page 18: We are trying to minimize the function

f (x) = ∥x− a1∥2 + ∥x− a2∥2 + · · ·+ ∥x− ak∥2.
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Note that ∥x− ai∥2 = (x− ai)T(x− ai), so

∂f

∂x
= 2(x− a1)T + 2(x− a2)T + · · ·+ 2(x− ak)T = 2

(
kx−

k∑
i=1

ai
)T

.

The stationary point of f (the solution to ∂f
∂x (x) = 0) is therefore

x =
1
k

(a1 + a2 + · · ·+ ak) .

Note that the Hesse matrix of f is ∂2f
∂x2 = 2kI (with n-fold eigenvalue 2k), which

is positive definite, so our stationary point is in fact a (local) minimum.

Solution to problem 3.15, page 18: The problem is to find the extreme val-

ues of the function f (x,y) = 2x2 + y2 constrained to the (closed and bounded)
domain given by 4(x − 1)2 + y2 ≤ 16. We split this into two subtasks.

• Find the extreme values of f on the interior of the domain, ie. subject to
strict inequality 4(x − 1)2 + y2 < 16. Extreme values on the interior can
only be attained at local extrema of f , which are contained in the interior
of the domain.

• Find the extreme values of f on the boundary of the domain, ie. subject
to equality 4(x−1)2 +y2 = 16. These will be determined using the method
of Lagrange multipliers.

Let’s start with the interior. Stationary points of f are solutions of the system

∂f

∂x
= 4x = 0,

∂f

∂y
= 2y = 0.

Clearly, x1 = 0, y1 = 0 is the only solution of this system, ie. T1(0,0) is the only
stationary point of f . This point is contained in the interior of our domain
(since 4(0− 1)2 + 02 = 4 < 16 holds).

Now the boundary. Let’s rewrite the equation 4(x − 1)2 + y2 = 16 as

4(x − 1)2 + y2 − 16︸                 ︷︷                 ︸
g(x,y)

= 0,

ie. we have rewritten the constraint as g(x,y) = 0. The corresponding Lagrange
function is

L(x,y,λ) = f (x,y)−λg(x,y) = 2x2 + y2 −λ(4(x − 1)2 + y2 − 16).

Candidates for extrema on the boundary are the stationary points of this La-
grange function. (Strictly speaking, we only need the x and y components of
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these stationary points.) Stationary points of L are solutions of the system

∂L
∂x

= 4x − 8λ(x − 1) = 0,

∂L
∂y

= 2y − 2λy = 0,

∂L
∂λ

= −(4(x − 1)2 + y2 − 16) = 0.

(The last equation is, of course, equivalent to our constraint.) From the second
equation we get 2y(1−λ) = 0, which implies y = 0 or λ = 1.

• The case y2,3 = 0 can be plugged directly into the third equation, and we
get (x − 1)2 = 4 or x2 = −1 and x3 = 3.

• In case λ = 1 we get −4x = −8 from the first equation, or x4,5 = 2. Plugging
this into the third equation we have y2 = 12 or y4,5 = ±2

√
3.

Summarizing, we have the following five points, which are candidates for
global extrema of f on our domain:

T (x,x) T1(0,0) T2(−1,0) T3(3,0) T4(2,−2
√

3) T5(2,2
√

3)
f (x,y) 0 2 18 20 20

.

The bottom row contains the values of f evaluated at corresponding stationary
points. Clearly, the smallest value, 0, is attained at T1(0,0), while the largest
value, 20, is attained at two points, T4(2,−2

√
3) and T5(2,2

√
3).

Solution to problem 3.16, page 18: The first octant is defined by inequalities
x ≥ 0, y ≥ 0, and z ≥ 0. So, along with x + y + z = 5, we have four constraints.
We’ll split the task into following subtasks:

• Find candidates for extrema in the interior of the triangle T . That means
extrema of g with respect to one constraint, namely x+y+z = 5. Addition-
ally, only candidates with x > 0, y > 0, and z > 0 should be considered.

• Find candidates for extrema on the edges of the triangle T . That means
extrema of g with respect to two constraints, x + y + z = 5 and one of the
planes x = 0, y = 0, or z = 0.

Let’s start with the interior of T . The Lagrange function is

L(x,y,z,λ) = xy2z2 −λ(x+ y + z − 5).

It stationary points are solutions of

∂L
∂x

= y2z2 −λ = 0,

∂L
∂y

= 2xyz2 −λ = 0,

∂L
∂z

= 2xy2z −λ = 0,

∂L
∂λ

= −(x+ y + z − 5) = 0.
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From the first three equations we have y2z2 = 2xyz2 = 2xy2z. Since we only
need to consider candidates with x > 0, y > 0, and z > 0, we can safely ignore
the solutions with any of the x, y, or z equal to 0. Hence:

y2z2 = 2xyz2 ∴ y = 2x and

2xyz2 = 2xy2z ∴ z = y ∴ z = 2x.

Plugging this into the equation of the constraint, we get 5x−5 = 0 or x = 1. So,
T1(1,2,2) is our first candidate.

We could define Lagrange functions with two Lagrange multipliers for each
of the edges of the triagle, but, due to the simplicity of the additional con-
straints, we don’t have to. Simply plugging x = 0, y = 0, or z = 0 into the above
L will simplify our task. A lot!

• If x = 0, then L(0, y,z,λ) = −λ(y + z − 5). Also g(0, y,z) = 0.

• If y = 0, then L(x,0, z,λ) = −λ(x+ z − 5). Also g(x,0, z) = 0.

• If z = 0, then L(x,y,0,λ) = −λ(x+ y − 5). Also g(x,y,0) = 0.

That means that g is constant (and 0) along all edges of the triangle T . At
T1(1,2,2), however, the value of g is

g(1,2,2) = 16.

So, the largest value of g on T is 16.

Solution to problem 3.17, page 18: The equation

x2 − xy + y2 = 3

represents the constraint in this task. The expression we’re trying to maximize
is ∥x∥ =

√
x2 + y2. Dealing with square roots can be cumbersome, and we’ll see

that it’s preferable to maximize

f (x,y) = x2 + y2

instead. (N.b.: If v is a multivariate function, then every stationary point of v
is also a stationary point of v2. Why?)

So we rewrite the constraint

x2 − xy + y2 − 3 = 0

and form the corresponding Lagrange function

L(x,y,λ) = x2 + y2 −λ(x2 − xy + y2 − 3).

Its stationary points are solutions of

∂L
∂x

= 2x −λ(2x − y) = 0,

∂L
∂y

= 2y −λ(2y − x) = 0,

∂L
∂λ

= −(x2 − xy + y2 − 3) = 0.
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This system is a bit trickier. We can assume λ , 0 (since λ = 0 would imply
x = 0 and y = 0 from first two equations) and rewrite the first two equations as

1
λ

=
2x − y

2x
and

1
λ

=
2y − x

2y
.

Therefore

2x − y
2x

=
2y − x

2y
∴ 2xy − 2y2 = 2xy − 2x2 ∴ x2 = y2 or y = ±x.

Now we plug both cases of y = ±x into the constraint (or the third equation).

• In case y = −x we have 3x2 − 3 = 0 or x1,2 = ±1.

• In case y = x we have x2 − 3 = 0 or x3,4 = ±
√

3.

Let’s summarize with a table

T (x,x) T1(−1,1) T2(1,−1) T3(−
√

3,−
√

3) T4(
√

3,
√

3)
f (x,y) 2 2 6 6

.

The largest value in the bottom row is 6, so the points T3 and T4 are farthest away
from the origin (at a distance

√
6).

Solution to problem 3.18, page 18: As usual we prefer to maximize the square

of distance from the origin rather then the distance itself. The Lagrange func-
tion is

L(x,y,λ) = x2 + y2 −λ
(
(x2 + y2)2 − x3 − y3

)
The system for the stationary points of L is:

∂L
∂x

= 2x −λ
(
4x(x2 + y2)− 3x2

)
= 0,

∂L
∂y

= 2y −λ
(
4y(x2 + y2)− 3y2

)
= 0,

∂L
∂λ

= −
(
(x2 + y2)2 − x3 − y3

)
= 0.

One obvious solution is (x,y) = (0,0). We can discard this solution (since this
is the origin itself) by crossing out both the x and y factors in the first two
equations and then express the λ variable in two ways

2
λ

= 4(x2 + y2)− 3x

2
λ

= 4(x2 + y2)− 3y

By identifying these two equations we get x = y (all this assuming neither x nor
y equals 0), and then the constraint gives us the equation

4x4 = 2x3

with x = 1
2 as the only non-zero solution.



71

However, it is possible that only one of the variables equals zero and we
still get a valid solution. Assume x = 0 and y , 0. The constraint then reduces
to the equation

y4 = y3

which yields y = 1. We can then directly verify that (x,y) = (0,1) (with λ = 2)
solves our system and is therefore a stationary point.

Similarly, assuming x , 0 and y = 0 leads to stationary point (x,y) = (1,0).
Out of the three non-trivial stationary points ( 1

2 ,
1
2 ), (0,1) and (1,0) we see

that the latter two attain the maximal distance from the origin.

Solution to problem 3.19, page 18:

(a) The extremal values of f can be situated either in the (strict) interior of
the disk or on its edge and we consider both possibilities separately.
First, any extremal point in the interior of the disc must be a stationary
point for f . The system for the stationary points is

∂f

∂x
= y + 1 = 0,

∂f

∂y
= x − 1 = 0,

with solution (x,y) = (1,−1). We can verify that this point lies in the
interior of our disk but if we compute the Hessian matrix

Hf (x,y) =
[
0 1
1 0

]
we notice this is a saddle point not an extremal point (the eigenvalues
λ1,2 = ±1 are of mixed signature).
So the extremal points must be on the edge of the disk, on the circle
x2 + y2 = 2. The relevant Lagrangian function for the problem is

L(x,y,λ) = xy − y + x − 1−λ(x2 + y2 − 2)

and the system for the stationary points is

∂L
∂x

= y + 1− 2λx = 0,

∂L
∂y

= x − 1− 2λy = 0,

∂L
∂λ

= −(x2 + y2 − 2) = 0

From the first two equations we express 2λ

2λ =
y + 1
x

and 2λ =
x − 1
y

This leads to
y + 1
x

=
x − 1
y

∴ y2 + y = x2 − x
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By adding x2 to both sides we get the identity

x2 + y2 + y = 2x2 − x

and considering the constraint x2 + y2 = 2 this gives the expression

y = 2x2 − x − 2

By plugging this expression for y back into the constraint equation we
get an equation for x.

x2 + (2x2 − x − 2)2 = 2 ∴ 2x4 − 2x3 − 3x2 + 2x+ 1 = 0

This is a quartic equation which in general has quite complicated solu-
tions. Fortunately, we can guess two integer roots x1 = 1 and x2 = −1.
This means the polynomial is divisible by the factor x2 −1 and comput-
ing the polynomial quotient gives

2x4 − 2x3 − 3x2 + 2x+ 1 : x2 − 1 = 2x2 − 2x − 1

which is the factor from which we can compute the remaining two roots

x3,4 =
1±
√

3
2

We summarize all four stationary points along with the function values
in a table

T (x,x) T1(−1,1) T2(1,−1) T3( 1+
√

3
2 , −1+

√
3

2 ) T4( 1−
√

3
2 , −1−

√
3

2 )
f (x,y) −4 0 1

2
1
2

.

The minimum value of f is therefore attained at T1, while the minimum
value is achieved both at T3 and T4.

(b) Comparing to Exercise 3.19 (a), it is clear that any extremal points com-
puted in (a) that happen to lie in the half-plane x ≥ 0 are also extremal
points for f on the half-disk. We notice that T3 does indeed lie in the
half-plane x ≥ 0 which means it is where the maximum of f on our
half-disk. The point T1 however does not lie in the half-disk. Since the
minimum is not achieved in the interior of the half dick nor the edge
x2 + y2 = 2, it must be on the edge with x = 0.
The Lagrangian function for f with the constraint x = 0 is

L(x,y,λ) = xy − y + x − 1−λx

The system for the stationary points is

∂L
∂x

= y + 1−λ = 0,

∂L
∂y

= x − 1 = 0,

∂L
∂λ

= −x = 0

This is a contradictory system which means f has no stationary points
on the (whole) line x = 0 (this is also clear directly since f (0, y) = −y).
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The last possibility is that the minimum is attained on the edge of both
the circle x2 +y2 = 2 and line x = 0, i.e. the ’corner’ points T5(0,−

√
2) and

T6(0,
√

2). The values of f at these points are
√

2 and −
√

2 respectively,
which means the minimum value of f on our half-disk is achieved at
the T6 ’corner’ point of the half-disk.

Solution to problem 3.20, page 18: In this task, the equation of the ellipsoid,
rewritten as

x2

a2 +
y2

b2 +
z2

c2 − 1 = 0,

represents the constraint. An inscribed box with vertices on this ellipsoid has
edges of length 2x, 2y, and 2z.

(a) The inscribed box has volume V (x,y,z) = 2x · 2y · 2z = 8xyz and this is
the function we’d like to maximize with respect to the constraint above.
The corresponding Lagrange function is

L(x,y,z,λ) = 8xyz −λ
(
x2

a2 +
y2

b2 +
z2

c2 − 1
)

.

The system that determines the stationary points of L is:

∂L
∂x

= 8yz − 2λx
a2 = 0,

∂L
∂y

= 8xz −
2λy
b2 = 0,

∂L
∂z

= 8xy − 2λz
c2 = 0,

∂L
∂λ

= −
(
x2

a2 +
y2

b2 +
z2

c2 − 1
)

= 0.

Multiplying the first three equations with yz, xz, and xy respectively,
and then rearranging we obtain

4a2y2z2 = λxyz,

4b2x2z2 = λxyz,

4c2x2y2 = λxyz,

and, ignoring cases with x = 0, y = 0, or z = 0, we deduce

x2

a2 =
y2

b2 =
z2

c2 .

Pluging this into the constraint we get

3 · x
2

a2 = 1 , 3 ·
y2

b2 = 1 , and 3 · z
2

c2 = 1,

ie. x = ± a√
3

, y = ± b√
3

, and z = ± c√
3

. Ignoring the signs (and solutions

with any of the edge lengths equal to 0), we deduce that

V
( a
√

3
,
b
√

3
,
c
√

3

)
=

8abc

3
√

3

is the largest possible volume of the inscribed rectangular box.
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(b) We just need to replace the function to maximize, in this subtask it is

S(x,y,z) = 2x · 2y + 2x · 2z+ 2y · 2z = 4(xy + xz+ yz).

As we will see, we are now presented with a slightly more formidable
problem. The Lagrange function becomes

L(x,y,z,λ) = 4(xy + xz+ yz)−λ
(
x2

a2 +
y2

b2 +
z2

c2 − 1
)

.

Its stationary points are solutions of

∂L
∂x

= 4(y + z)− 2λx
a2 = 0,

∂L
∂y

= 4(x+ z)−
2λy
b2 = 0,

∂L
∂z

= 4(x+ y)− 2λz
c2 = 0,

∂L
∂λ

= −
(
x2

a2 +
y2

b2 +
z2

c2 − 1
)

= 0.

Now, we multiply the first three equations with a2

2 , b
2

2 , and c2

2 , respec-
tively, to obtain

2a2(y + z) = λx,

2b2(x+ z) = λy,

2c2(x+ y) = λz.

This is now an eigenvalue problem. Namely, setting

A =

 0 2a2 2a2

2b2 0 2b2

2c2 2c2 0

 and x =

xy
z

 ,

the above system becomes Ax = λx. The characteristic polynomial of A
is

det(A−λI) = −λ3 + 4(a2b2 + a2c2 + b2c2)λ+ 16a2b2c2.

Note that this is a depressed cubic (ie. it has no λ2 term) and using
Cardano’s formula one can deduce that the only real zero is

λ1 =
4(a2b2 + a2c2 + b2c2)

C
+
C
3

,

where

C =
3

√
432a2b2c2 +

√
186624a4b4c4 − 6912(a2b2 + a2c2 + b2c2)3

2
.

The unintimidated reader can continue from here.
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Solution to problem 3.21, page 19: Denote the lengths of the edges of this box
by a, b, and c. Since we assembled the box frame from a rod of length ℓ, we
must have 4a+ 4b+ 4c = ℓ. This is our constraint.

(a) The volume of the box is V (a,b,c) = abc, and this is precisely the func-
tion we must maximize, subject to the constraint above. Let’s rewrite
the constraint as

4a+ 4b+ 4c − ℓ = 0

and form the Lagrange function

L(a,b,c,λ) = abc −λ(4a+ 4b+ 4c − ℓ).

The stationary point of L are solutions of the system

∂L
∂a

= bc − 4λ = 0,

∂L
∂b

= ac − 4λ = 0,

∂L
∂c

= ab − 4λ = 0,

∂L
∂λ

= −(4a+ 4b+ 4c − ℓ) = 0.

We quickly gather from the first three equations that bc = ac = ab holds.
While we could safely ignore the solutions with any of the a, b, or c equal
to 0, let’s be strict (once) and find all solutions to this system.
If a = 0, then we must have λ = 0. (Consider either the second or the
third equation.) Now, from the first equation (and since λ = 0) we must
have either b = 0 or c = 0. If b = 0, we have c = ℓ

4 , if c = 0, we have b = ℓ
4 .

There’s nothing special about starting the reasoning above with ‘if a = 0’.
The conclusion has the same form: Any solution with one of the a, b, or
c equal to 0, will force λ = 0, two of the a, b, and c equal to 0, and the
remaining one equal to ℓ

4 . These solutions are

( ℓ4 ,0,0,0) , (0, ℓ4 ,0,0) , and (0,0, ℓ4 ,0).

They are also not the ones that interest us—the volume of the resulting
(degenerate) box is 0, ie. these solutions represent the minima.
So let’s assume that none of the a, b, c are equal to 0. Then, from bc =
ac = ab, we deduce that b = a and c = b, ie. a = b = c. Plugging this into
the constraint, we get a = ℓ

12 and

V
( ℓ

12
,
ℓ

12
,
ℓ

12

)
=

( ℓ
12

)3

is the largest possible volume of such a box frame. So the box frame
with largest possible volume we can assemble from a rod of length ℓ is
in fact a frame of a cube.

(b) The additional restriction is in fact an additional constraint, ab = Amust
hold. We’ll rewrite this as ab −A = 0. The Lagrange function will now
depend on two Lagrange multipliers, we’ll denote them by λ and µ:

L(a,b,c,λ,µ) = abc −λ(4a+ 4b+ 4c − ℓ)−µ(ab −A).
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We now solve the system:

∂L
∂a

= bc − 4λ−µb = 0,

∂L
∂b

= ac − 4λ−µa = 0,

∂L
∂c

= ab − 4λ = 0,

∂L
∂λ

= −(4a+ 4b+ 4c − ℓ) = 0,

∂L
∂λ

= −(ab −A) = 0.

From the third equation we have 4λ = ab, and replacing 4λ with ab in
the first two equations we get

bc − ab −µb = 0 ∴ b(c − a−µ) = 0,

ac − ab −µa = 0 ∴ a(c − b −µ) = 0.

We’re assuming that A > 0, and, since ab = A (from the fifth equation),
a , 0 and b , 0. Hence,

c − a−µ = 0,

c − b −µ = 0,

which implies a = b. From the second constraint we now get a2 = A or
a =
√
A. (We ignore the negative solution, since the length cannot be

negative.) To finish, we use the first constraint (the fourth equation in
our ‘Lagrange system’) to get 8

√
A+4c = ℓ or c = ℓ

4 −2
√
A. The maximum

possible volume in this case is therefore

V
(√
A,
√
A,
ℓ
4
− 2
√
A
)

= A ·
( ℓ

4
− 2
√
A
)
.

The solution is, in a sense, expected. We obtained a box with base rect-
angle a square with side length

√
A, the remainder of the rod length is

then used for four vertical edges.

Solution to problem 3.22, page 19: This is similar to the previous exercise.

Denote by a the side length of the base equilateral triangle and by h the prism’s
height. The volume of such a prism is

V (a,h) =
a2h
√

3
4

,

and its surface area is

A(a,h) =
a2
√

3
2

+ 3ah.

Having ℓ meters of the rod available, means that 6a+ 3h = ℓ. That will be our
constraint.
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(a) We need to maximize V with respect to the constraint. The Lagrange
function is

L(a,h,λ) =
a2h
√

3
4
−λ(6a+ 3h− ℓ).

It stationary points are solutions of

∂L
∂a

=
ah
√

3
2
− 6λ = 0,

∂L
∂b

=
a2
√

3
4
− 3λ = 0,

∂L
∂λ

= −(6a+ 3h− ℓ) = 0.

Let’s multiply the first equation with 2 and the second one with 4 to get

ah
√

3− 12λ = 0,

a2
√

3− 12λ = 0.

From this we get

ah = a2 ∴ ah− a2 = 0 ∴ a(h− a) = 0.

Ignoring the solutions with a = 0, we get h = a. (The reader is invited to
consider the solutions we just ignored. What do they represent?) Hence,
from the constraint, we get 9a − ℓ = 0 or a = h = ℓ

9 . That means that we
need to cut up the rod into 9 pieces of equal lenght, and the resulting
maximal volume is

V
( ℓ

9
,
ℓ
9

)
=
ℓ3
√

3
4 · 93 .

(b) We now need to maximize A with respect to our constraint. The La-
grange function is

L(a,h,λ) =
a2
√

3
2

+ 3ah−λ(6a+ 3h− ℓ).

It stationary points are now solutions of

∂L
∂a

= a
√

3 + 3h− 6λ = 0,

∂L
∂b

= 3a− 3λ = 0,

∂L
∂λ

= −(6a+ 3h− ℓ) = 0.

Note that λ = a from the second equation, and, plugging this into the
first equation, we get

a
√

3 + 3h− 6a = 0 ∴ 3h = (6−
√

3)a.

Substituting that instead of 3h into the third equation, we have

6a+ (6−
√

3)a− ℓ = 0 ∴ a =
ℓ

12−
√

3
=

12 +
√

3
141

ℓ � 0.09739ℓ,
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and

3h =
(6−
√

3)a

12−
√

3
∴ h =

(6−
√

3)a

3(12−
√

3)
=

23− 2
√

3
141

ℓ � 0.13855ℓ.

The reader is invited to evaluate the resulting maximal attainable area.

Solution to problem 3.23, page 19:

(a) We’d like to find extreme values of the function f (x) = aTx subject to the
constraint ∥x∥ = d. We first rewrite the constraint as

∥x∥2 = d2 ∴ ∥x∥2 − d2 = 0 ∴ xTx− d2︸   ︷︷   ︸
g(x)

= 0

and set the Lagrange function as

L(x,λ) = f (x)−λg(x) = aTx−λ(xTx− d2).

The stationary points of L are again the solutions of the system

∂L
∂x

= aT − 2λxT = 0,

∂L
∂λ

= −(xTx− d2) = 0.

It follows from the first equation that a = 2λx, ie. x and a are parallel.
Let’s write this as x = αa and plug it into the second equation:

α2aTa− d2 = 0 ∴ α2 =
d2

∥a∥2
∴ α = ± d

∥a∥
.

Hence, vectors x, at which extreme values of f are attained, are

x = αa = ± d
∥a∥

a,

and these extreme values are

f
(
± d
∥a∥

a
)

= aT
(
± d
∥a∥

a
)

= ±d∥a∥.

(b) Extreme value of the expression aTx (the dot product of a and x) on
the sphere with equation ∥x∥ = d will be attained precisely when x is
parallel to a.

Solution to problem 3.24, page 19:

(a) Let’s rewrite the constraint as ∥x∥2 = d2 or xTx − d2 = 0. The Lagrange
function corresponding to our problem is

L(x,λ) = xTAx−λ(xTx− d2).
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Its stationary points are, as usual, solutions to the system

∂L
∂x

= xT(A+AT)− 2λxT = 0,

∂L
∂λ

= −(xTx− d2) = 0.

Note that the first (system of) equation(s) can be rewritten as

A+AT

2
x = λx,

ie. x is an eigenvector of A+AT

2 (and λ is the corresponding eigenvalue).

(Since A+AT

2 is symmetric, its eigenvalues and its eigenvectors are real,
ie. λ ∈R and x ∈Rn.) Another thing to notice is

xT
(A+AT

2

)
x =

1
2

(
xTAx+ xTATx

)
=

1
2
· 2xTAx = xTAx = f (x).

So, for an eigenvector x of A+AT

2 with ∥x∥ = d, we have

f (x) = xT
(A+AT

2

)
x = xTλx = λd2.

Finally, the extreme values of f subject to ∥x∥ = d can be identified as
λmaxd

2 and λmind
2, where λmax and λmin are the largest and the small-

est eigenvalues of A+AT

2 , respectively.

(b) Now the constraint is xTAx = d2, which we rewrite as xTAx−d2 = 0. For
the Lagrange function we have

L(x,µ) = xTx−µ(xTAx− d2).

(The decision to denote the Lagrange multiplier by µ will become clear
later.) Its stationary points are solutions of

∂L
∂x

= 2xT − 2µxTA = 0,

∂L
∂µ

= −(xTAx− d2) = 0.

(We used the fact that A is symmetric when evaluating the first deriva-
tive.) Rewriting the first equation as

Ax =
1
µ
x,

we see that 1
µ must be an eigenvalue of A, with x the corresponding

eigenvector. (Note that 1
µ makes sense as an eigenvalue of A, since A is

a definite matrix.) From the second equation (the constraint), we now
obtain

xTAx = d2 ∴ xT
(

1
µ
x
)

= d2 ∴ ∥x∥2 = µd2 or f (x) = µd2.
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Hence, denoting the smallest and the largest eigenvalues of A by λmin
and λmax, respectively, we have that

d2

λmin
is the largest value attained by f , and

d2

λmax
is the smallest value attained by f .

(We used that λ = 1
µ for an eigenvalue λ of A, and also the fact that the

eigenvalues of A are positive.)

Solution to problem 3.25, page 19:

(a) The inequality ∥x−p∥ ≤ d determines a closed ball of radius d centered
at p. We split the solution into two subtasks: extrema in the interior
(determined by ∥x − p∥ < d) and extrema on the boundary (determined
by ∥x−p∥ = d).

• The interior: This is easy, the only stationary point of f is x = 0 and
this is a candidate if and only of ∥p∥ < d, ie. 0 is actually contained
in the interior.

• The boundary: Write the constraint as

∥x−p∥ = d ∴ ∥x−p∥2 − d2 = 0 ∴ (x−p)T(x−p)− d2 = 0,

and let’s set up the corresponding Lagrange function

L(x,λ) = xTx−λ
(
(x−p)T(x−p)− d2

)
.

Now,

∂L
∂x

= 2xT −λ(2xT − 2pT) = 0T,

∂L
∂λ

= −
(
∥x−p∥2 − d2

)
= 0.

The first equation implies that (2 − 2λ)x = −2λp, ie. x and p must
be parallel. Let’s write this as x = αp for some α ∈ R and plug this
into the second equation

∥αp−p∥ = d ∴ ∥(α−1)p∥ = d ∴ |α−1| = d
∥p∥

∴ α = 1± d
∥p∥

.

Hence,

x =
(
1± d
∥p∥

)
p,

which should be the expected solution.

Finally, if ∥p∥ < d, then the minimal value of f is attained in the interior
at 0, and is f (0) = 0. In case ∥p∥ ≥ d, the minimal value of f is attained
on the boaundary at

(
1− d

∥p∥

)
p, and is equal to ∥p∥2 + d2 − 2d∥p∥. (As a

sanity check, notice that in the boundary case ∥p∥ = d that last expres-
sion is 0, as it should be.)



81

(b) The equation Ax = b determines an affine subspace of Rn. The appro-
priate Lagrange function now is

L(x,λ) = xTx−λT(Ax−b).

(Note that λ is now a column vector!) Its stationary points are solutions
of

∂L
∂x

= 2xT −λTA = 0T,

∂L
∂λ

= −(Ax−b) = 0.

From the first equation we have x = 1
2A

Tλ. We plug this into the second
equation to get

1
2
AATλ = b.

If we assume that A is of full rank (so that AAT is invertible), we can

express λ = 2
(
AAT

)−1
b, and therefore

x =
1
2
ATλ = AT

(
AAT

)−1
b.

In general, ie. for non-full rank matrices A, the solution is x = A+b,
where A+ is the Moore–Penrose inverse of A.
Finally, the minimal value of f on that affine subspace is

f
(
AT

(
AAT

)−1
b
)

= bT
(
AAT

)−1
AAT

(
AAT

)−1
b = bT

(
AAT

)−1
b

for the case when A is of full rank. (That −1 superscript needs to be
replaced by a + superscript for A which is not of full rank.)

(c) Let’s consider the boundary first, ie. we minimize f (x) = ∥x∥2 with re-
spect to ∥x−p∥ = d and Ax = b. The Lagrange function is

L(x,µ,λ) = xTx−µ(∥x−p∥2 − d2)−λT(Ax−b).

Its stationary points are solutions of the system

∂L
∂x

= 2xT − 2µ(x−p)T −λTA = 0T,

∂L
∂µ

= −(∥x−p∥2 − d2) = 0,

∂L
∂λ

= −(Ax−b) = 0.

Let’s start: From the first equation we get

(2− 2µ)x = ATλ− 2µp ∴ x =
1

2− 2µ

(
ATλ− 2µp

)
.

Plugging this into the third equation we have

A
(
ATλ− 2µp

)
= (2− 2µ)x ∴ AATλ = (2− 2µ)b+ 2µAp,
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hence
λ =

(
AAT

)−1
((2− 2µ)b+ 2µAp) .

Now we plug this into the expression for x and obtain

x =
1

2− 2µ

(
AT

((
AAT

)−1
((2− 2µ)b+ 2µAp)

)
− 2µp

)
=

1
2− 2µ

(
(2− 2µ)AT

(
AAT

)−1
b+ 2µ(ATAp−p)

)
= AT

(
AAT

)−1
b+

µ

1−µ
(ATA− I)p

= AT
(
AAT

)−1
b+α(ATA− I)p,

where we introduced α = µ
1−µ in the last line. Finally, we use the con-

straint ∥x − p∥2 = d2. Plugging the above expression for x into it and
rearranging we obtain a quadratic equation for α, namely

α2pT(ATA− I)p+ 2α
(
pTATb−pTAT(AAT)−1b−pT(ATA− I)p

)
+

+bT(AAT)−1b− 2pTAT(AAT)−1b+pTp− d2 = 0

Solving this equation for α and plugging the solution in to our expres-
sion for x, we finally obtain the points, at which extreme values of
f (x) = xTx are attained. Conveniently, we leave that final task to the
reader.
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